Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes
The venerable 1,3-dipolar cycloaddition has been widely used in organic synthesis for the construction of various heterocycles. However, in its century-long history, the simple and omnipresent aromatic phenyl ring has remained a stubbornly unreactive dipolarophile. Here we report 1,3-dipolar cycload...
Saved in:
Published in | Nature chemistry Vol. 15; no. 6; pp. 764 - 772 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2023
NATURE PORTFOLIO Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The venerable 1,3-dipolar cycloaddition has been widely used in organic synthesis for the construction of various heterocycles. However, in its century-long history, the simple and omnipresent aromatic phenyl ring has remained a stubbornly unreactive dipolarophile. Here we report 1,3-dipolar cycloaddition between aromatic groups and diazoalkenes, generated in situ from lithium acetylides and
N
-sulfonyl azides. The reaction results in densely functionalized annulated cyclic sulfonamide-indazoles that can be further converted into stable organic molecules that are important in organic synthesis. The involvement of aromatic groups in the 1,3-dipolar cycloadditions broadens the synthetic utility of diazoalkenes, a family of dipoles that have been little explored so far and are otherwise difficult to access. The process described here provides a route for the synthesis of medicinally relevant heterocycles and can be extended to other arene-containing starting materials. Computational examination of the proposed reaction pathway revealed a series of finely orchestrated bond-breaking and bond-forming events that ultimately lead to the annulated products.
1,3-Dipolar cycloadditions are well-known transformations in organic synthesis. However, the reactivity of benzene rings in these processes is underexplored. In situ-generated diazoalkenes have now been shown to undergo intramolecular 1,3-dipolar cycloadditions with aromatic rings. The transformation results in an unaromatized benzene ring that enables the synthesis of functionalized heterocycles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-023-01188-z |