Comparison of diffusion tensor imaging (DTI) tissue characterization parameters in white matter tracts of patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD)

Objective To investigate the microstructural properties of T2 lesion and normal-appearing white matter (NAWM) in 20 white matter tracts between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and correlations between the tissue damage and clinical variables. Methods The wh...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 34; no. 8; pp. 5263 - 5275
Main Authors Chen, Xiaoya, Roberts, Neil, Zheng, Qiao, Peng, Yuling, Han, Yongliang, Luo, Qi, Feng, Jinzhou, Luo, Tianyou, Li, Yongmei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective To investigate the microstructural properties of T2 lesion and normal-appearing white matter (NAWM) in 20 white matter tracts between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) and correlations between the tissue damage and clinical variables. Methods The white matter (WM) compartment of the brain was segmented for 56 healthy controls (HC), 48 patients with MS, and 38 patients with NMOSD, and for the patients further subdivided into T2 lesion and NAWM. Subsequently, the diffusion tensor imaging (DTI) tissue characterization parameters of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were compared for 20 principal white matter tracts. The correlation between tissue damage and clinical variables was also investigated. Results The higher T2 lesion volumes of 14 fibers were shown in MS compared to NMOSD. MS showed more microstructure damage in 13 fibers of T2 lesion, but similar microstructure in seven fibers compared to NMOSD. MS and NMOSD had microstructure damage of NAWM in 20 fibers compared to WM in HC, with more damage in 20 fibers in MS compared to NMOSD. MS patients showed higher correlation between the microstructure of T2 lesion areas and NAWM. The T2 lesion microstructure damage was correlated with duration and impaired cognition in MS. Conclusions Patients with MS and NMOSD show different patterns of microstructural damage in T2 lesion and NAWM areas. The prolonged disease course of MS may aggravate the microstructural damage, and the degree of microstructural damage is further related to cognitive impairment. Clinical relevance statement Microstructure differences between T2 lesion areas and normal-appearing white matter help distinguish multiple sclerosis and neuromyelitis optica spectrum disorder. In multiple sclerosis, lesions rather than normal-appearing white matter should be a concern, because the degree of lesion severity correlated both with normal-appearing white matter damage and cognitive impairment. Key Points • Multiple sclerosis and neuromyelitis optica spectrum disorder have different damage patterns in T2 lesion and normal-appearing white matter areas. • The microstructure damage of normal-appearing white matter is correlated with the microstructure of T2 lesion in multiple sclerosis and neuromyelitis optica spectrum disorder. • The microstructure damage of T2 lesion in multiple sclerosis is correlated with duration and cognitive impairment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1432-1084
0938-7994
1432-1084
DOI:10.1007/s00330-023-10550-1