Resveratrol Promotes Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Through miR-193a/SIRT7 Axis

Resveratrol (RES) is a novel dietary phenol compound derived from plants and has been studied extensively for its health benefit and medical potential including osteoporosis. The purpose of this study is to investigate the role of resveratrol in osteoporosis in vivo and in vitro and explore the mech...

Full description

Saved in:
Bibliographic Details
Published inCalcified tissue international Vol. 110; no. 1; pp. 117 - 130
Main Authors Song, Chen-Yang, Guo, Yu, Chen, Fen-Yong, Liu, Wen-Ge
Format Journal Article
LanguageEnglish
Published New York Springer US 2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Resveratrol (RES) is a novel dietary phenol compound derived from plants and has been studied extensively for its health benefit and medical potential including osteoporosis. The purpose of this study is to investigate the role of resveratrol in osteoporosis in vivo and in vitro and explore the mechanism of osteogenic differentiation of BMSCs. RT-qPCR, ELISA, and Western blot were used to measure the expression level of miR-193a, SIRT7, and osteogenic markers proteins. The interaction between miR-193a and SIRT7 was validated by dual-luciferase reporter assay. Moreover, MTT assay was conducted to detect cell viability. Alizarin red s staining was used to examine bone formation and calcium deposits. The ovariectomized rat model was set up successfully and HE staining was used to examine femoral trabeculae tissue. Our results showed that miR-193a was overexpressed, while SIRT7 was downregulated in osteoporosis. RES suppressed miR-193a to promote osteogenic differentiation. Mechanically, miR-193a targeted and negative regulated SIRT7. Additionally, it was confirmed that SIRT7 promoted osteogenic differentiation of BMSCs through NF-κB signaling pathway. Further study indicated that RES exerted its beneficial function through miR-193a/SIRT7-mediated NF-κB signaling to alleviate osteoporosis in vivo. Our research suggested that the RES-modulated miR-193a inhibition is responsible for the activation of SIRT7/NF-κB signaling pathway in the process of osteogenic differentiation, providing a novel insight into diagnosis and treatment of osteoporosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0171-967X
1432-0827
DOI:10.1007/s00223-021-00892-7