De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence
De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains en...
Saved in:
Published in | Nature cell biology Vol. 25; no. 6; pp. 836 - 847 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named ‘pyrimidinosome’, involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.
Yang, Zhao, Wang and colleagues identify and characterize a pyrimidine biosynthetic complex pyrimidinosome that is regulated by AMP-activated protein kinase and facilitates dihydroorotate dehydrogenase-mediated ferroptosis resistance, thereby regulating cancer cell proliferation and survival. |
---|---|
AbstractList | De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named ‘pyrimidinosome’, involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.Yang, Zhao, Wang and colleagues identify and characterize a pyrimidine biosynthetic complex pyrimidinosome that is regulated by AMP-activated protein kinase and facilitates dihydroorotate dehydrogenase-mediated ferroptosis resistance, thereby regulating cancer cell proliferation and survival. De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment. De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5'-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named 'pyrimidinosome', involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment. De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named ‘pyrimidinosome’, involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment. Yang, Zhao, Wang and colleagues identify and characterize a pyrimidine biosynthetic complex pyrimidinosome that is regulated by AMP-activated protein kinase and facilitates dihydroorotate dehydrogenase-mediated ferroptosis resistance, thereby regulating cancer cell proliferation and survival. |
Author | Wang, Liao Yang, Chuanzhen Zhao, Yiliang Li, Xuexue Guo, Zihao Ma, Lingdi Li, Binghui Chu, Qiaoyun Wu, Ying Fu, Yanxia Yang, Ronghui Niu, Jing |
Author_xml | – sequence: 1 givenname: Chuanzhen orcidid: 0000-0001-5287-9502 surname: Yang fullname: Yang, Chuanzhen organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 2 givenname: Yiliang surname: Zhao fullname: Zhao, Yiliang organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 3 givenname: Liao surname: Wang fullname: Wang, Liao organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University – sequence: 4 givenname: Zihao surname: Guo fullname: Guo, Zihao organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 5 givenname: Lingdi surname: Ma fullname: Ma, Lingdi organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 6 givenname: Ronghui orcidid: 0000-0002-9765-9666 surname: Yang fullname: Yang, Ronghui organization: Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University – sequence: 7 givenname: Ying surname: Wu fullname: Wu, Ying organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 8 givenname: Xuexue surname: Li fullname: Li, Xuexue organization: Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University – sequence: 9 givenname: Jing surname: Niu fullname: Niu, Jing organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 10 givenname: Qiaoyun surname: Chu fullname: Chu, Qiaoyun organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 11 givenname: Yanxia surname: Fu fullname: Fu, Yanxia organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University – sequence: 12 givenname: Binghui orcidid: 0000-0002-6110-8010 surname: Li fullname: Li, Binghui email: bli@ccmu.edu.cn organization: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Department of Cancer Cell Biology and National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37291265$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFjEUhYNU7Jd_wIUE3HQzmu-ZLKVWWyi4seuQydxoyrzJmGTE99-b6dsidNFVbuA59x7OOUVHMUVA6B0lHynhw6ciqJSqI4x3hFKhOvEKnVDRt0H1-miblex6rtkxOi3lnhAqBOnfoGPeM02ZkifIfQEc05-El30OuzCFCHgMqexj_QU1OOzSbpnhLxRc1mVJuWJno4OMHcwzXnKag4dsa0gR2zjh9slpqamEgifw0Nhz9NrbucDbx_cM3X29-nF53d1-_3Zz-fm2c7yXtVNcacWU9867fhwm5bUTPWPCEepG4qUdR-Zkr8BzRew4aOkn6qgnmlPtFD9DF4e9zdXvFUo1u1A2mzZCWothAxNqUERv6Idn6H1ac2zuNkpK3c6QRr1_pNZxB5NZWkQ2781TfA0YDoDLqZQM3rhQH7Ko2YbZUGK2psyhKdOaMg9NGdGk7Jn0afuLIn4QlQbHn5D_235B9Q9Zu6bN |
CitedBy_id | crossref_primary_10_1007_s12013_024_01611_3 crossref_primary_10_1038_s41467_024_51232_w crossref_primary_10_1038_s41392_024_01769_5 crossref_primary_10_1096_fj_202301493R crossref_primary_10_1016_j_apsb_2024_07_021 crossref_primary_10_1016_j_molcel_2023_07_013 crossref_primary_10_1038_s41556_023_01280_z crossref_primary_10_1002_mco2_70010 crossref_primary_10_1080_07853890_2025_2449584 crossref_primary_10_1016_j_tiv_2024_105893 crossref_primary_10_3892_mmr_2024_13402 crossref_primary_10_1016_j_jmb_2024_168832 crossref_primary_10_1093_procel_pwae003 crossref_primary_10_1038_s41419_024_06618_5 crossref_primary_10_3390_ijms26031359 crossref_primary_10_1016_j_foodchem_2025_143437 crossref_primary_10_1186_s12935_025_03743_9 crossref_primary_10_3389_fimmu_2024_1346585 crossref_primary_10_1016_j_apsb_2024_04_020 crossref_primary_10_1038_s41556_023_01159_z crossref_primary_10_1016_j_aquaculture_2024_741885 crossref_primary_10_1016_j_bcp_2023_115933 crossref_primary_10_1016_j_bbamcr_2023_119639 crossref_primary_10_1016_j_celrep_2024_115179 crossref_primary_10_1038_s41467_025_57334_3 crossref_primary_10_1038_s41556_024_01360_8 crossref_primary_10_1038_s41388_024_03005_4 crossref_primary_10_1186_s12943_024_01999_9 crossref_primary_10_1080_15257770_2024_2351135 crossref_primary_10_1038_s41388_025_03277_4 crossref_primary_10_1038_s41580_024_00703_5 crossref_primary_10_1002_adfm_202420540 crossref_primary_10_1007_s11033_024_09208_y crossref_primary_10_1038_s41598_024_62738_0 crossref_primary_10_1080_1120009X_2024_2385266 crossref_primary_10_1186_s13046_024_03235_0 crossref_primary_10_1021_acsptsci_4c00533 crossref_primary_10_1186_s13045_024_01564_3 crossref_primary_10_1186_s12964_024_01870_w crossref_primary_10_3390_biology14010012 crossref_primary_10_3892_or_2024_8764 crossref_primary_10_1016_j_phymed_2024_155908 crossref_primary_10_1016_j_celrep_2025_115327 crossref_primary_10_1016_j_celrep_2023_113023 crossref_primary_10_1038_s41586_023_06270_7 |
Cites_doi | 10.1038/nature21378 10.1199/tab.0018 10.1126/science.1257132 10.1038/s41467-021-24859-2 10.1074/jbc.R400007200 10.1007/BF00685106 10.1038/nature11003 10.1126/science.1228771 10.1126/science.1228792 10.1126/science.aac6054 10.1016/j.tcb.2015.10.013 10.1016/j.cell.2015.07.017 10.1146/annurev.bi.49.070180.001345 10.1016/j.cell.2015.07.016 10.1038/356768a0 10.1038/s41580-019-0123-5 10.1007/s11064-015-1558-5 10.1038/s41580-022-00547-x 10.1038/s41467-018-08033-9 10.1016/0014-5793(94)01006-4 10.1016/j.cmet.2015.09.009 10.1021/bi501480d 10.1016/j.cmet.2018.07.021 10.1016/j.tibs.2015.01.004 10.1038/s41556-018-0118-z 10.1038/nchembio711 10.1038/s41556-020-0461-8 10.1016/j.celrep.2019.01.106 10.1016/j.cmet.2006.05.005 10.1007/BF00685878 10.1093/nar/gky869 10.1038/s41467-022-34850-0 10.1038/s41556-018-0125-0 10.1038/s41467-017-00702-5 10.1038/s41556-019-0296-3 10.1084/jem.20191226 10.1038/s41586-021-03539-7 10.1016/j.cell.2017.03.023 10.1126/science.1152241 10.1016/j.cmet.2018.10.014 10.1093/oxfordjournals.annonc.a058298 10.1074/jbc.272.28.17719 10.1093/nar/gkab1081 10.1093/nar/gkv047 10.1111/febs.13534 10.1016/j.cell.2012.03.042 10.1126/science.aah5582 10.1126/science.aat9528 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 |
DOI | 10.1038/s41556-023-01146-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 847 |
ExternalDocumentID | 37291265 10_1038_s41556_023_01146_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82030093; 81972567; 82002958 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 |
ID | FETCH-LOGICAL-c375t-6369626ffcfc7b8d6f9c47224c01cb0f5abb2c576ef360ab895fd1c1f09319c63 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Tue Aug 05 10:43:07 EDT 2025 Sat Aug 23 13:09:30 EDT 2025 Thu Apr 03 07:10:09 EDT 2025 Tue Jul 01 00:31:18 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:40:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-6369626ffcfc7b8d6f9c47224c01cb0f5abb2c576ef360ab895fd1c1f09319c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9765-9666 0000-0001-5287-9502 0000-0002-6110-8010 |
PMID | 37291265 |
PQID | 2825595760 |
PQPubID | 45779 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2824686096 proquest_journals_2825595760 pubmed_primary_37291265 crossref_citationtrail_10_1038_s41556_023_01146_4 crossref_primary_10_1038_s41556_023_01146_4 springer_journals_10_1038_s41556_023_01146_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Barretina (CR39) 2012; 483 Voss (CR26) 2015; 40 Lee (CR40) 2020; 22 Mao (CR30) 2021; 593 Dixon (CR31) 2012; 149 Maroun (CR35) 1993; 32 Kyoung, Russell, Kohnhorst, Esemoto, An (CR6) 2015; 54 Schaffer (CR27) 2015; 22 Zhao (CR42) 2019; 21 Wang (CR43) 2015; 347 Liu (CR20) 2020; 217 Lane, Fan (CR9) 2015; 43 Mayers, Vander Heiden (CR12) 2015; 40 Natale (CR33) 1992; 3 An, Kumar, Sheets, Benkovic (CR4) 2008; 320 French (CR5) 2016; 351 Peters (CR32) 1990; 50 CR44 Garcia-Bermudez (CR16) 2018; 20 Wang (CR22) 2019; 10 Robitaille (CR7) 2013; 339 Ben-Sahra, Howell, Asara, Manning (CR8) 2013; 339 Li (CR45) 2017; 8 Alkan (CR18) 2018; 28 Evans, Guy (CR2) 2004; 279 Sullivan (CR15) 2015; 162 Myers (CR25) 2017; 357 Sullivan (CR17) 2018; 20 Hardie, Schaffer, Brunet (CR28) 2016; 26 Steinberg, Hardie (CR29) 2022; 24 Yamaoka (CR1) 1997; 272 Bajzikova (CR21) 2019; 29 Moffatt, Ashihara (CR3) 2002; 1 Kremer (CR19) 2021; 12 Degterev (CR36) 2005; 1 Sullivan (CR23) 1994; 353 Melendez-Rodriguez (CR13) 2019; 26 Birsoy (CR14) 2015; 162 Peng, Yin, Li (CR46) 2017; 543 Yang (CR47) 2022; 13 Zhu, Thompson (CR11) 2019; 20 Thornberry (CR37) 1992; 356 Cool (CR24) 2006; 3 Ma (CR49) 2019; 47 Urba (CR34) 1992; 31 Jones (CR10) 1980; 49 Chen (CR48) 2022; 50 Monteverde, Muthalagu, Port, Murphy (CR38) 2015; 282 Cantor (CR41) 2017; 169 BA Moffatt (1146_CR3) 2002; 1 DG Hardie (1146_CR28) 2016; 26 HF Alkan (1146_CR18) 2018; 28 GR Steinberg (1146_CR29) 2022; 24 ME Jones (1146_CR10) 1980; 49 JE Sullivan (1146_CR23) 1994; 353 S Urba (1146_CR34) 1992; 31 SJ Dixon (1146_CR31) 2012; 149 GJ Peters (1146_CR32) 1990; 50 S An (1146_CR4) 2008; 320 T Monteverde (1146_CR38) 2015; 282 L Li (1146_CR45) 2017; 8 T Chen (1146_CR48) 2022; 50 H Zhao (1146_CR42) 2019; 21 DM Kremer (1146_CR19) 2021; 12 JR Mayers (1146_CR12) 2015; 40 C Mao (1146_CR30) 2021; 593 A Degterev (1146_CR36) 2005; 1 S Wang (1146_CR43) 2015; 347 DR Evans (1146_CR2) 2004; 279 R Yang (1146_CR47) 2022; 13 LB Sullivan (1146_CR15) 2015; 162 B Cool (1146_CR24) 2006; 3 I Ben-Sahra (1146_CR8) 2013; 339 JR Cantor (1146_CR41) 2017; 169 J Garcia-Bermudez (1146_CR16) 2018; 20 K Birsoy (1146_CR14) 2015; 162 M Bajzikova (1146_CR21) 2019; 29 LB Sullivan (1146_CR17) 2018; 20 R Natale (1146_CR33) 1992; 3 1146_CR44 M Peng (1146_CR46) 2017; 543 J Ma (1146_CR49) 2019; 47 NA Thornberry (1146_CR37) 1992; 356 CM Voss (1146_CR26) 2015; 40 J Maroun (1146_CR35) 1993; 32 M Kyoung (1146_CR6) 2015; 54 F Melendez-Rodriguez (1146_CR13) 2019; 26 M Liu (1146_CR20) 2020; 217 AN Lane (1146_CR9) 2015; 43 BE Schaffer (1146_CR27) 2015; 22 T Yamaoka (1146_CR1) 1997; 272 Y Wang (1146_CR22) 2019; 10 JB French (1146_CR5) 2016; 351 RW Myers (1146_CR25) 2017; 357 AM Robitaille (1146_CR7) 2013; 339 J Zhu (1146_CR11) 2019; 20 J Barretina (1146_CR39) 2012; 483 H Lee (1146_CR40) 2020; 22 37291266 - Nat Cell Biol. 2023 Jun;25(6):798-799 |
References_xml | – volume: 543 start-page: 433 year: 2017 end-page: 437 ident: CR46 article-title: SZT2 dictates GATOR control of mTORC1 signalling publication-title: Nature doi: 10.1038/nature21378 – volume: 1 start-page: e0018 year: 2002 ident: CR3 article-title: Purine and pyrimidine nucleotide synthesis and metabolism publication-title: Arabidopsis Book doi: 10.1199/tab.0018 – volume: 347 start-page: 188 year: 2015 end-page: 194 ident: CR43 article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 publication-title: Science doi: 10.1126/science.1257132 – volume: 12 year: 2021 ident: CR19 article-title: GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis publication-title: Nat. Commun. doi: 10.1038/s41467-021-24859-2 – volume: 279 start-page: 33035 year: 2004 end-page: 33038 ident: CR2 article-title: Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.R400007200 – volume: 31 start-page: 167 year: 1992 end-page: 169 ident: CR34 article-title: Multicenter phase II trial of brequinar sodium in patients with advanced squamous-cell carcinoma of the head and neck publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00685106 – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: CR39 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume: 339 start-page: 1320 year: 2013 end-page: 1323 ident: CR7 article-title: Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis publication-title: Science doi: 10.1126/science.1228771 – volume: 339 start-page: 1323 year: 2013 end-page: 1328 ident: CR8 article-title: Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1 publication-title: Science doi: 10.1126/science.1228792 – volume: 351 start-page: 733 year: 2016 end-page: 737 ident: CR5 article-title: Spatial colocalization and functional link of purinosomes with mitochondria publication-title: Science doi: 10.1126/science.aac6054 – volume: 26 start-page: 190 year: 2016 end-page: 201 ident: CR28 article-title: AMPK: an energy-sensing pathway with multiple inputs and outputs publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.10.013 – volume: 162 start-page: 552 year: 2015 end-page: 563 ident: CR15 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 49 start-page: 253 year: 1980 end-page: 279 ident: CR10 article-title: Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.001345 – volume: 162 start-page: 540 year: 2015 end-page: 551 ident: CR14 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 356 start-page: 768 year: 1992 end-page: 774 ident: CR37 article-title: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes publication-title: Nature doi: 10.1038/356768a0 – volume: 20 start-page: 436 year: 2019 end-page: 450 ident: CR11 article-title: Metabolic regulation of cell growth and proliferation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0123-5 – volume: 40 start-page: 2431 year: 2015 end-page: 2442 ident: CR26 article-title: AMPK activation affects glutamate metabolism in astrocytes publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1558-5 – volume: 24 start-page: 255 year: 2022 end-page: 272 ident: CR29 article-title: New insights into activation and function of the AMPK publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-022-00547-x – volume: 10 year: 2019 ident: CR22 article-title: Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia publication-title: Nat. Commun. doi: 10.1038/s41467-018-08033-9 – volume: 353 start-page: 33 year: 1994 end-page: 36 ident: CR23 article-title: Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)01006-4 – volume: 22 start-page: 907 year: 2015 end-page: 921 ident: CR27 article-title: Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.009 – volume: 54 start-page: 870 year: 2015 end-page: 880 ident: CR6 article-title: Dynamic architecture of the purinosome involved in human de novo purine biosynthesis publication-title: Biochemistry doi: 10.1021/bi501480d – volume: 28 start-page: 706 year: 2018 end-page: 720.e6 ident: CR18 article-title: Cytosolic aspartate availability determines cell survival when glutamine is limiting publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.07.021 – volume: 40 start-page: 130 year: 2015 end-page: 140 ident: CR12 article-title: Famine versus feast: understanding the metabolism of tumors in vivo publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.01.004 – volume: 20 start-page: 775 year: 2018 end-page: 781 ident: CR16 article-title: Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0118-z – volume: 50 start-page: 4644 year: 1990 end-page: 4649 ident: CR32 article-title: In vivo inhibition of the pyrimidine de novo enzyme dihydroorotic acid dehydrogenase by brequinar sodium (DUP-785; NSC 368390) in mice and patients publication-title: Cancer Res. – volume: 1 start-page: 112 year: 2005 end-page: 119 ident: CR36 article-title: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio711 – volume: 22 start-page: 225 year: 2020 end-page: 234 ident: CR40 article-title: Energy-stress-mediated AMPK activation inhibits ferroptosis publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0461-8 – volume: 26 start-page: 2257 year: 2019 end-page: 2265.e4 ident: CR13 article-title: HIF1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.106 – volume: 3 start-page: 403 year: 2006 end-page: 416 ident: CR24 article-title: Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.005 – volume: 32 start-page: 64 year: 1993 end-page: 66 ident: CR35 article-title: Multicenter phase II study of brequinar sodium in patients with advanced lung cancer publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00685878 – volume: 47 start-page: D1211 year: 2019 end-page: D1217 ident: CR49 article-title: iProX: an integrated proteome resource publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky869 – volume: 13 year: 2022 ident: CR47 article-title: Identification of purine biosynthesis as an NADH-sensing pathway to mediate energy stress publication-title: Nat. Commun. doi: 10.1038/s41467-022-34850-0 – volume: 20 start-page: 782 year: 2018 end-page: 788 ident: CR17 article-title: Aspartate is an endogenous metabolic limitation for tumour growth publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0125-0 – volume: 8 year: 2017 ident: CR45 article-title: ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin publication-title: Nat. Commun. doi: 10.1038/s41467-017-00702-5 – volume: 21 start-page: 476 year: 2019 end-page: 486 ident: CR42 article-title: AMPK-mediated activation of MCU stimulates mitochondrial Ca entry to promote mitotic progression publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0296-3 – ident: CR44 – volume: 217 start-page: e20191226 year: 2020 ident: CR20 article-title: Inhibiting both proline biosynthesis and lipogenesis synergistically suppresses tumor growth publication-title: J. Exp. Med. doi: 10.1084/jem.20191226 – volume: 593 start-page: 586 year: 2021 end-page: 590 ident: CR30 article-title: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer publication-title: Nature doi: 10.1038/s41586-021-03539-7 – volume: 169 start-page: 258 year: 2017 end-page: 272.e17 ident: CR41 article-title: Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase publication-title: Cell doi: 10.1016/j.cell.2017.03.023 – volume: 320 start-page: 103 year: 2008 end-page: 106 ident: CR4 article-title: Reversible compartmentalization of de novo purine biosynthetic complexes in living cells publication-title: Science doi: 10.1126/science.1152241 – volume: 29 start-page: 399 year: 2019 end-page: 416.e10 ident: CR21 article-title: Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.10.014 – volume: 3 start-page: 659 year: 1992 end-page: 660 ident: CR33 article-title: Multicenter phase II trial of brequinar sodium in patients with advanced melanoma publication-title: Ann. Oncol. doi: 10.1093/oxfordjournals.annonc.a058298 – volume: 272 start-page: 17719 year: 1997 end-page: 17725 ident: CR1 article-title: Amidophosphoribosyltransferase limits the rate of cell growth-linked de novo purine biosynthesis in the presence of constant capacity of salvage purine biosynthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.28.17719 – volume: 50 start-page: D1522 year: 2022 end-page: D1527 ident: CR48 article-title: iProX in 2021: connecting proteomics data sharing with big data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1081 – volume: 43 start-page: 2466 year: 2015 end-page: 2485 ident: CR9 article-title: Regulation of mammalian nucleotide metabolism and biosynthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv047 – volume: 282 start-page: 4658 year: 2015 end-page: 4671 ident: CR38 article-title: Evidence of cancer-promoting roles for AMPK and related kinases publication-title: FEBS J. doi: 10.1111/febs.13534 – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: CR31 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 357 start-page: 507 year: 2017 end-page: 511 ident: CR25 article-title: Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy publication-title: Science doi: 10.1126/science.aah5582 – volume: 162 start-page: 540 year: 2015 ident: 1146_CR14 publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 21 start-page: 476 year: 2019 ident: 1146_CR42 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0296-3 – volume: 339 start-page: 1323 year: 2013 ident: 1146_CR8 publication-title: Science doi: 10.1126/science.1228792 – volume: 282 start-page: 4658 year: 2015 ident: 1146_CR38 publication-title: FEBS J. doi: 10.1111/febs.13534 – volume: 20 start-page: 782 year: 2018 ident: 1146_CR17 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0125-0 – volume: 26 start-page: 2257 year: 2019 ident: 1146_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.106 – volume: 26 start-page: 190 year: 2016 ident: 1146_CR28 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.10.013 – volume: 47 start-page: D1211 year: 2019 ident: 1146_CR49 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky869 – volume: 353 start-page: 33 year: 1994 ident: 1146_CR23 publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)01006-4 – volume: 50 start-page: D1522 year: 2022 ident: 1146_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1081 – volume: 320 start-page: 103 year: 2008 ident: 1146_CR4 publication-title: Science doi: 10.1126/science.1152241 – volume: 3 start-page: 659 year: 1992 ident: 1146_CR33 publication-title: Ann. Oncol. doi: 10.1093/oxfordjournals.annonc.a058298 – volume: 49 start-page: 253 year: 1980 ident: 1146_CR10 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.49.070180.001345 – volume: 217 start-page: e20191226 year: 2020 ident: 1146_CR20 publication-title: J. Exp. Med. doi: 10.1084/jem.20191226 – volume: 22 start-page: 907 year: 2015 ident: 1146_CR27 publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.009 – volume: 347 start-page: 188 year: 2015 ident: 1146_CR43 publication-title: Science doi: 10.1126/science.1257132 – volume: 40 start-page: 130 year: 2015 ident: 1146_CR12 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.01.004 – volume: 356 start-page: 768 year: 1992 ident: 1146_CR37 publication-title: Nature doi: 10.1038/356768a0 – volume: 40 start-page: 2431 year: 2015 ident: 1146_CR26 publication-title: Neurochem. Res. doi: 10.1007/s11064-015-1558-5 – volume: 593 start-page: 586 year: 2021 ident: 1146_CR30 publication-title: Nature doi: 10.1038/s41586-021-03539-7 – volume: 1 start-page: e0018 year: 2002 ident: 1146_CR3 publication-title: Arabidopsis Book doi: 10.1199/tab.0018 – volume: 20 start-page: 775 year: 2018 ident: 1146_CR16 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0118-z – volume: 54 start-page: 870 year: 2015 ident: 1146_CR6 publication-title: Biochemistry doi: 10.1021/bi501480d – volume: 20 start-page: 436 year: 2019 ident: 1146_CR11 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0123-5 – volume: 8 year: 2017 ident: 1146_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00702-5 – volume: 1 start-page: 112 year: 2005 ident: 1146_CR36 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio711 – volume: 483 start-page: 603 year: 2012 ident: 1146_CR39 publication-title: Nature doi: 10.1038/nature11003 – volume: 351 start-page: 733 year: 2016 ident: 1146_CR5 publication-title: Science doi: 10.1126/science.aac6054 – volume: 29 start-page: 399 year: 2019 ident: 1146_CR21 publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.10.014 – volume: 13 year: 2022 ident: 1146_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34850-0 – volume: 50 start-page: 4644 year: 1990 ident: 1146_CR32 publication-title: Cancer Res. – volume: 272 start-page: 17719 year: 1997 ident: 1146_CR1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.28.17719 – volume: 339 start-page: 1320 year: 2013 ident: 1146_CR7 publication-title: Science doi: 10.1126/science.1228771 – volume: 24 start-page: 255 year: 2022 ident: 1146_CR29 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-022-00547-x – volume: 3 start-page: 403 year: 2006 ident: 1146_CR24 publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.005 – volume: 12 year: 2021 ident: 1146_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24859-2 – ident: 1146_CR44 doi: 10.1126/science.aat9528 – volume: 31 start-page: 167 year: 1992 ident: 1146_CR34 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00685106 – volume: 169 start-page: 258 year: 2017 ident: 1146_CR41 publication-title: Cell doi: 10.1016/j.cell.2017.03.023 – volume: 162 start-page: 552 year: 2015 ident: 1146_CR15 publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 43 start-page: 2466 year: 2015 ident: 1146_CR9 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv047 – volume: 10 year: 2019 ident: 1146_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08033-9 – volume: 149 start-page: 1060 year: 2012 ident: 1146_CR31 publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 279 start-page: 33035 year: 2004 ident: 1146_CR2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.R400007200 – volume: 28 start-page: 706 year: 2018 ident: 1146_CR18 publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.07.021 – volume: 32 start-page: 64 year: 1993 ident: 1146_CR35 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/BF00685878 – volume: 543 start-page: 433 year: 2017 ident: 1146_CR46 publication-title: Nature doi: 10.1038/nature21378 – volume: 357 start-page: 507 year: 2017 ident: 1146_CR25 publication-title: Science doi: 10.1126/science.aah5582 – volume: 22 start-page: 225 year: 2020 ident: 1146_CR40 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0461-8 – reference: 37291266 - Nat Cell Biol. 2023 Jun;25(6):798-799 |
SSID | ssj0014407 |
Score | 2.6203723 |
Snippet | De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 836 |
SubjectTerms | 13/106 13/95 38/1 631/67/2327 631/80/82 631/80/83 64/60 AMP-activated protein kinase AMP-Activated Protein Kinases Biomedical and Life Sciences Biosynthesis Cancer Cancer Research Cell Biology Cell growth Cell Proliferation Cell survival Dehydrogenase Dehydrogenases Developmental Biology Dihydroorotase Dihydroorotate Dehydrogenase Ferroptosis Kinases Life Sciences Membrane proteins Neoplasms Phosphates Proteins Pyrimidines - pharmacology Stem Cells Transaminase Uridine Uridine monophosphate |
Title | De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence |
URI | https://link.springer.com/article/10.1038/s41556-023-01146-4 https://www.ncbi.nlm.nih.gov/pubmed/37291265 https://www.proquest.com/docview/2825595760 https://www.proquest.com/docview/2824686096 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS9xAEB-sUuhLqdrW-MUW-mYX87HZJE_FUw8RehRRuLeQ_QJBkni5K95_78wmdyJSn0LIJllmZnd-OzO7P4CfsZDoBETBs6IyXCjhuELHwY2pROGsNM4H3P5M5NWduJ6m0yHg1g1llas50U_UptEUIz-lPZZpgeg4_N0-cmKNouzqQKHxAbbo6DIq6cqm6wUX5S2zfndRyjMEAsOmmTDJTztypFR-S9VE2ICL147pDdp8kyn1Dmj8BT4PyJGd9arehg1b78DHnktyuQv6wrK6-dewdklMXeiSLFP3TbesEeLhK8wXj9sn27Fu0RLqZpo0PmMUu2ctsfc429sDq2rD8GbWtPOmu--YsY5mgK9wN768Pb_iA4MC10mWzrkktr5YOqedzlRupCs0nQ4pdBhpFbq0UirWKFTrEhlWKi9SZyIdubDAoall8g0266a2e8AikQltcloxW6EjowoEewYBm0kyBFkmgGglvlIPx4sTy8VD6dPcSV72Ii9R5KUXeSkCOFm_0_aHa7zb-nCllXIYaF35YhYB_Fg_xiFCsqtq2yx8G7RIiYu1AL732lz_jrKWUSzTAH6t1Pvy8f_3Zf_9vhzAp9ibFkVrDmFzPlvYIwQvc3XsLfQYts7Go9EEr6PLyd-bZ0Rb7OU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UFtEX8W5q1RH0SYfmMpkkDyJqW7a2XURa6FuauUFBknSzq-6f8jd6ziTZIsW-9THMLZzrN3POzAF4EwuJTkAUPCsqw4USjit0HNyYShTOSuP8gdvRVE5OxNfT9HQN_ox3YSitcrSJ3lCbRtMZ-TbdsUwLRMfhx_aCU9Uoiq6OJTR6sTiwy1-4Zes-7O8gf9_G8d7u8ZcJH6oKcJ1k6ZxLqmAXS-e005nKjXSFphcThQ4jrUKXVkrFGheyLpFhpfIidSbSkcO9f1RomeC8t2BDYCMago3Pu9Nv31dxCyH8BW00PynPEHoM13TCJN_uyHVTwi_lL2EHLv51hVfw7ZXYrHd5e_fh3oBV2adeuB7Amq0fwu2-euXyEegdy-rmZ8PaJdUGQydomTpvumWNoBKHMJ-ubn_bjnWLlnA-0yRjM0bRAtZSvSBnewlkVW0Yfsyadt505x0z1pHNeQwnN0LdJ7BeN7V9BiwSmdAmpz26FToyqkB4aRAimiRDWGcCiEbylXp40JzqavwofWA9ycue5CWSvPQkL0UA71Zj2v45j2t7b41cKQfV7spLQQzg9aoZlZJoV9W2Wfg-qAMSt4cBPO25uVqO4qRRLNMA3o_svZz8__-yef2_vII7k-Ojw_Jwf3rwHO7GXszorGgL1uezhX2B0GmuXg7yyuDsplXkLzmaKL0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvqDwbKGAkOIG1eThOckAVYlm1FCoOVNpbiF9SJZSkm93C_jV-HTNOshWq6K3HKH5pHp7PnhkPwOtYSDQCouBZURkulHBcoeHgxlSicFYa5y_cvp7Iw1PxeZ7Ot-DPmAtDYZXjnug3atNouiOfUI5lWiA6DiduCIv4Np0dtOecKkiRp3Usp9GLyLFd_8LjW_f-aIq8fhPHs0_fPx7yocIA10mWLrmkanaxdE47nancSFdoej1R6DDSKnRppVSscVLrEhlWKi9SZyIdubBA0dUywXFvwe0sSSPSsWy-OeyRzzTrM5tSniEIGRJ2wiSfdGTEKfSXIpmwARf_GsUrSPeKl9Ybv9ku3BtQK_vQi9l92LL1A7jT17FcPwQ9taxuLhrWrqlKGJpDy9RZ061rhJfYhfnAdfvbdqxbtYT4mSZpWzDyG7CWKgc528siq2rD8GPRtMumO-uYsY52n0dweiO0fQzbdVPbPWCRyIQ2OZ3WrdCRUQUCTYNg0SQZAjwTQDSSr9TD0-ZUYeNn6V3sSV72JC-R5KUneSkCeLvp0_YPe1zben_kSjkoeVdeimQArza_UT2JdlVtm5Vvg9og8aAYwJOem5vpyGMaxTIN4N3I3svB_7-Wp9ev5SXcRcUovxydHD-DndhLGV0a7cP2crGyzxFDLdULL6wMfty0dvwF9AMrjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+pyrimidine+biosynthetic+complexes+support+cancer+cell+proliferation+and+ferroptosis+defence&rft.jtitle=Nature+cell+biology&rft.au=Yang%2C+Chuanzhen&rft.au=Zhao%2C+Yiliang&rft.au=Wang%2C+Liao&rft.au=Guo%2C+Zihao&rft.date=2023-06-01&rft.eissn=1476-4679&rft.volume=25&rft.issue=6&rft.spage=836&rft_id=info:doi/10.1038%2Fs41556-023-01146-4&rft_id=info%3Apmid%2F37291265&rft.externalDocID=37291265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |