De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence
De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains en...
Saved in:
Published in | Nature cell biology Vol. 25; no. 6; pp. 836 - 847 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | De novo pyrimidine biosynthesis is achieved by cytosolic carbamoyl-phosphate synthetase II, aspartate transcarbamylase and dihydroorotase (CAD) and uridine 5′-monophosphate synthase (UMPS), and mitochondrial dihydroorotate dehydrogenase (DHODH). However, how these enzymes are orchestrated remains enigmatical. Here we show that cytosolic glutamate oxaloacetate transaminase 1 clusters with CAD and UMPS, and this complex then connects with DHODH, which is mediated by the mitochondrial outer membrane protein voltage-dependent anion-selective channel protein 3. Therefore, these proteins form a multi-enzyme complex, named ‘pyrimidinosome’, involving AMP-activated protein kinase (AMPK) as a regulator. Activated AMPK dissociates from the complex to enhance pyrimidinosome assembly but inactivated UMPS, which promotes DHODH-mediated ferroptosis defence. Meanwhile, cancer cells with lower expression of AMPK are more reliant on pyrimidinosome-mediated UMP biosynthesis and more vulnerable to its inhibition. Our findings reveal the role of pyrimidinosome in regulating pyrimidine flux and ferroptosis, and suggest a pharmaceutical strategy of targeting pyrimidinosome in cancer treatment.
Yang, Zhao, Wang and colleagues identify and characterize a pyrimidine biosynthetic complex pyrimidinosome that is regulated by AMP-activated protein kinase and facilitates dihydroorotate dehydrogenase-mediated ferroptosis resistance, thereby regulating cancer cell proliferation and survival. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1465-7392 1476-4679 1476-4679 |
DOI: | 10.1038/s41556-023-01146-4 |