Quantitative MRI using STrategically Acquired Gradient Echo (STAGE): optimization for 1.5 T scanners and T1 relaxation map validation

Objectives The strategically acquired gradient echo (STAGE) protocol, developed for 3T scanners, allows one to derive quantitative maps such as T1, T2*, proton density, and quantitative susceptibility mapping in about 5 min. Our aim was to adapt the STAGE sequences for 1.5T scanners which are still...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 31; no. 7; pp. 4504 - 4513
Main Authors Pirastru, Alice, Chen, Yongsheng, Pelizzari, Laura, Baglio, Francesca, Clerici, Mario, Haacke, E. Mark, Laganà, Maria Marcella
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objectives The strategically acquired gradient echo (STAGE) protocol, developed for 3T scanners, allows one to derive quantitative maps such as T1, T2*, proton density, and quantitative susceptibility mapping in about 5 min. Our aim was to adapt the STAGE sequences for 1.5T scanners which are still commonly used in clinical practice. Furthermore, the accuracy and repeatability of the STAGE-derived T1 estimate were tested. Methods Flip angle (FA) optimization was performed using a theoretical simulation by maximizing signal-to-noise ratio, contrast-to-noise ratio, and T1 precision. The FA choice was further refined with the ISMRM/NIST phantom and in vivo acquisitions. The accuracy of the T1 estimate was assessed by comparing STAGE-derived T1 values with T1 maps obtained with an inversion recovery sequence. T1 accuracy was investigated for both the phantom and in vivo data. Finally, one subject was acquired 10 times once a week and a group of 27 subjects was scanned once. The T1 coefficient of variation (COV) was computed to assess scan-rescan and physiological variability, respectively. Results The FA 1,2 = 7°,38° were identified as the optimal FA pair at 1.5T. The T1 estimate errors were below 3% and 5% for phantom and in vivo measurements, respectively. COV for different tissues ranged from 1.8 to 4.8% for physiological variability, and between 0.8 and 2% for scan-rescan repeatability. Conclusion The optimized STAGE protocol can provide accurate and repeatable T1 mapping along with other qualitative images and quantitative maps in about 7 min on 1.5T scanners. This study provides the groundwork to assess the role of STAGE in clinical settings. Key Points • The STAGE imaging protocol was optimized for use on 1.5T field strength scanners. • A practical STAGE protocol makes it possible to derive quantitative maps (i.e., T1, T2*, PD, and QSM) in about 7 min at 1.5T. • The T1 estimate derived from the STAGE protocol showed good accuracy and repeatability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0938-7994
1432-1084
DOI:10.1007/s00330-020-07515-z