Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings

The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and ch...

Full description

Saved in:
Bibliographic Details
Published inBiological cybernetics Vol. 114; no. 4-5; pp. 461 - 471
Main Authors Maidana Capitán, Melisa, Cámpora, Nuria, Sigvard, Claudio Sebastián, Kochen, Silvia, Samengo, Inés
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0340-1200
1432-0770
1432-0770
DOI10.1007/s00422-020-00840-y

Cover

Abstract The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
AbstractList The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
Author Kochen, Silvia
Maidana Capitán, Melisa
Cámpora, Nuria
Sigvard, Claudio Sebastián
Samengo, Inés
Author_xml – sequence: 1
  givenname: Melisa
  surname: Maidana Capitán
  fullname: Maidana Capitán, Melisa
  organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche
– sequence: 2
  givenname: Nuria
  surname: Cámpora
  fullname: Cámpora, Nuria
  organization: Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce “Néstor Kirchner”, Universidad Nacional Arturo Jauretche
– sequence: 3
  givenname: Claudio Sebastián
  surname: Sigvard
  fullname: Sigvard, Claudio Sebastián
  organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche
– sequence: 4
  givenname: Silvia
  surname: Kochen
  fullname: Kochen, Silvia
  organization: Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce “Néstor Kirchner”, Universidad Nacional Arturo Jauretche
– sequence: 5
  givenname: Inés
  orcidid: 0000-0002-5241-3697
  surname: Samengo
  fullname: Samengo, Inés
  email: ines.samengo@gmail.com
  organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32656680$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3TAQRkVJaW5-XqCLYuimGzcjWbLsZQm3SSCQTboWkjxKFWwpleyAs-qjV7k3bSGLrATDOaOZ-Y7IQYgBCflI4SsFkGcZgDNWA4MaoONQr-_IhvKmlKSEA7KBphQpAzgkRznfA0DPRP-BHDasFW3bwYb8vvUT1pUOQ-US_low2LVOmOP4iENl46NOXgeLhdDjmn2uXEzVgDPa2cewE-1PnbSdMfknvStGV2X0T0vpU7rGqfJhLkTSAfVYbbcXVUIb0-DDXT4h750eM56-vMfkx_ft7fllfX1zcXX-7bq2jRRzLYTpe9pqYw0zVBtuhKM964zEjgqHUjqrnRlEB5wXkg_GdLzjsi0OlaY5Jl_2fR9SLGvmWU0-WxzHMlRcsmKcNYIK6HlBP79C7-OSyv6FEpICF137TH16oRYz4aAekp90WtXf2xaA7QGbYs4J3T-EgnoOUO0DVCVAtQtQrUXqXknWz7urlgv68W212au5_BPuMP0f-w3rD0klsZQ
CitedBy_id crossref_primary_10_3390_s21196343
crossref_primary_10_1093_nc_niae003
Cites_doi 10.1109/ICM.2014.7071799
10.1109/ICASSP.2015.7178093
10.1109/EMBC.2018.8512735
10.1016/S1525-5050(02)00029-X
10.5405/jmbe.1463
10.1111/j.1460-9568.2005.04482.x
10.3389/fpsyg.2011.00241
10.1016/S0926-6410(97)00018-9
10.1142/S0217979218500868
10.1038/srep25422
10.1093/brain/awn111
10.1007/s10827-012-0411-y
10.1016/S1388-2457(02)00297-3
10.1523/JNEUROSCI.0160-10.2010
10.1101/212563
10.1523/JNEUROSCI.1011-17.2017
10.1152/jn.00368.2010
10.1098/rspb.1988.0055
10.1016/S1474-4422(12)70188-6
10.1016/j.yebeh.2015.12.003
10.1113/jphysiol.1976.sp011516
10.1016/j.yebeh.2011.08.031
10.3389/fneur.2015.00192
10.1109/IJCNN.2018.8489493
10.1038/s41598-019-56548-y
10.1093/brain/awq316
10.1016/j.neuroimage.2006.11.009
10.1038/338334a0
10.1016/j.brainresrev.2006.06.003
10.1109/TNSRE.2012.2206054
10.1016/j.conb.2013.10.007
10.1109/TSP.2017.8076027
10.1016/j.seizure.2016.06.008
10.1007/BF00250603
10.1016/j.neuron.2020.01.005
10.1109/JBHI.2015.2424074
10.1089/brain.2015.0397
10.1155/2011/912720
10.1038/nrn.2016.22
10.3390/s130912536
10.1093/brain/awp086
10.1177/155005940904000408
10.1142/S0129065715500239
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
NPM
3V.
7QO
7TK
7X7
7XB
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8D
HCIFZ
JQ2
K7-
K9.
L7M
LK8
M0N
M0S
M1P
M2P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s00422-020-00840-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Aerospace Database
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Computer Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0770
EndPage 471
ExternalDocumentID 32656680
10_1007_s00422_020_00840_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica
  grantid: PICT 2016 Raíces 1004
  funderid: http://dx.doi.org/10.13039/501100003074
– fundername: Consejo Nacional de Investigaciones Científicas y Técnicas
  grantid: PIP 0256
  funderid: http://dx.doi.org/10.13039/501100002923
– fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica
  grantid: PICT 2016 0775
  funderid: http://dx.doi.org/10.13039/501100003074
– fundername: Universidad Nacional de Cuyo
– fundername: Consejo Nacional de Investigaciones Científicas y Técnicas
  grantid: PIP 0256
– fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica
  grantid: PICT 2016 Raíces 1004
– fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica
  grantid: PICT 2016 0775
GroupedDBID -4W
-56
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.GJ
.VR
06C
06D
0R~
0VY
1N0
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
4P2
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBC
EBD
EBLON
EBS
ECS
EDH
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M0N
M1P
M2P
M4Y
M7P
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
7TK
7XB
8AL
8FD
8FK
ABRTQ
FR3
H8D
JQ2
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c375t-55b9916abcb2b1ab4b5f1928b7e815fe77fcafbd580449914dbb8484766ab17b3
IEDL.DBID 8FG
ISSN 0340-1200
1432-0770
IngestDate Fri Sep 05 11:30:22 EDT 2025
Fri Jul 25 19:01:33 EDT 2025
Thu Apr 03 07:07:44 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 04:21:56 EDT 2025
Fri Feb 21 02:36:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4-5
Keywords Consciousness
EEG
Epilepsy
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-55b9916abcb2b1ab4b5f1928b7e815fe77fcafbd580449914dbb8484766ab17b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5241-3697
PMID 32656680
PQID 2571045864
PQPubID 54056
PageCount 11
ParticipantIDs proquest_miscellaneous_2423515094
proquest_journals_2571045864
pubmed_primary_32656680
crossref_primary_10_1007_s00422_020_00840_y
crossref_citationtrail_10_1007_s00422_020_00840_y
springer_journals_10_1007_s00422_020_00840_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems
PublicationTitle Biological cybernetics
PublicationTitleAbbrev Biol Cybern
PublicationTitleAlternate Biol Cybern
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References KlimeschWDoppelmayrMSchwaigerJAuingerPWinklerTParadoxical’ alpha synchronization in a memory taskEpilepsy Behav1999744935011:STN:280:DyaK1M7pt1Wqsg%3D%3D
WilsonSBEmersonRSpike detection: a review and comparison of algorithmsClin Neurophysiol2002113121873188112464324
BancaudJTalairachJBonisASchaubCSziklaGBorelPBordas FerrerMLa stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique1965ParisMasson
de Ruyter van SteveninckRBialekWReal-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transmission in short spike sequencesProc R Soc Lond Ser B Biol Sci19882341277379414
NordenADBlumenfeldHThe role of subcortical structures in human epilepsyEpilepsy Behav20023321923112662601
DanielsonNBGuoJNBlumenfeldHThe default mode network and altered consciousness in epilepsyBehav Neurol20112415565214478993150226
DonosCDümpelmannMSchulze-BonhageAEarly seizure detection algorithm based on intracranial eeg and random forest classificationInt J Neural Syst2015255155002326022388
WarrenCPHuSSteadMBrinkmannBHBowerMRBWorrellGASynchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnectedJ Neurophysiol2010104635303539209266103007634
OroscoLGarcés CorreaALaciarEReview: a survey of performance and techniques for automatic epilepsy detectionJ Med Biol Eng2013336526537
CámporaNKochenSSubjective and objective characteristics of altered consciousness during epileptic seizuresEpilepsy Behav20165512813226773683
SamengoIGollischTSpike-triggered covariance revisited: geometric proof, symmetry properties and extension beyond gaussian stimuliJ Comput Neurosci201334113716122798148
BryantHLSegundoJPSpike initiation by trans-membrane current: a white-noise analysisJ Physiol197626022793141:STN:280:DyaE2s%2FjtFehtg%3D%3D9785191309092
ArthuisMValtonLRègisJChauvelPWendlingFNaccacheLBernardCBartolomeiFImpaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronizationBrain200913282091210119416952
SausengPKlimeschWStadlerWSchabusMDoppelmayrMHanslmayrSGruberWRBirbaumerNA shift of visual spatial attention is selectively associated with human eeg alpha activityEur J Neurosci20052211291729261:STN:280:DC%2BD2MnksVKjuw%3D%3D16324126
CrickFKochCTowards a neurobiological theory of consciousnessSemin Neurosci19892263275
EdakawaKYanagisawaTKishimaHFukumaROshinoSKooHMKobayashiMTanakeMYoshimineTDetection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalographySci Rep20166254221:CAS:528:DC%2BC28XnsVeltrg%3D271471194857088
HarnerRAutomatic eeg spike detectionClin EEG Neurosci200940426227019780347
LiuY-CLinC-CKLinJ-JTSunY-NModel-based spike detection of epileptic eeg dataSensors2013139125361254724048343
KharbouchAShoebAGuttagJCashSSAn algorithm for seizure onset detection using intracranial eegEpilepsy Behav2011221S29S35220785153713785
CámporaNMininniCJKochenSLewSESeizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalographyScientific Reports20199120022318829566934586
GrayCMKönigPEngelAKSingerWOscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus propertiesNature198933862133341:STN:280:DyaL1M7lvFChuw%3D%3D2922061
LiuYZhouWYuanQChenSAutomatic seizure detection using wavelet transform and svm in long-term intracranial eegIEEE Trans Neural Syst Rehabil Eng201220674975522868635
TzallasATTsipourasMGTsalikakisDGKarvounisECAstrakasLKonitsiotisSTzaphlidouMStevanovicDAutomated epileptic seizure detection methods: A review studyEpilepsy-histological, electroencephalographic and psychological aspects, chapter 42012RijekaIntechOpen7598
CaullerLJKulicsATComparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkeyExp Brain Res19887235845921:STN:280:DyaL1M7ntFSntw%3D%3D3234504
Heller S MH, Nematollahi I, Manzouri F, Dümpelmann M, Schulze-Bonhage, A, Boedecker JPW (2018). Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 40th annual international conference of the ieee engineering in medicine and biology society, pp 2268–2271
RomeiVRGrossJThutGOn the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?J Neurosci2007302586928697
Boubchir L, Al-Maadeed S, Bouridane A, Chèrif AA (2015) Time-frequency image descriptors-based features for eeg epileptic seizure activities detection and classification. In IEEE 40th international conference on acoustics, speech and signal processing. IEEE, pp 867–871
SausengPFeldheimJFFreunbergerRHummelFCRight prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attentionFront Psychol20112241220071793186913
CourtensSColombetBCTrèbuchonATBènarCGraph measures of node strength for characterizing preictal synchrony in partial epilepsyBrain Connect20166753053927140287
KochCMassiminiMBolyMBTononiGNeural correlates of consciousness: progress and problemsNat Rev Neurosci2016173073211:CAS:528:DC%2BC28XmsVartLY%3D27094080
Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–60
WangGSunZTaoRLiKBaoGYanXEpileptic seizure detection based on partial directed coherence analysisIEEE J Biomed Health Inform2017203873879
BergerHüber das elektroenkephalogramm des menschenArch Psychiatr Nervenkrankh192987527570
BartolomeiFChauvelPWendlingFEpileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral eegBrain200813171818183018556663
FengLMotelowJEMaCBicheWMcCaffertyCSmithNLiuMZhanQJiaRXiaoBDuqueABlumenfeldHSeizures and sleep in the thalamus: Focal limbic seizuresshow divergent activity patterns in different thalamic nucleiJ Neurosci2017374711441114541:CAS:528:DC%2BC1cXhtlCjsb%2FO290665565700426
Aggarval G, Ghandi TK (2017) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–4
BoniniFLambertIWendlingFWMcGonigalABartolomeiFAltered synchrony and loss of consciousness during frontal lobe seizuresLancet Neurol201612211701175
RedinbaughMJPhillipsJMKambiNAMohantaSAndrykSDooleyGLAfrasiabiMRazASaalmannYBThalamus modulates consciousness via layer-specific control of cortexNeuron20201061667532053769
BlumenfeldHImpaired consciousness in epilepsyLancet Neurol2012119814826228987353732214
EnglotDJYangLYHamidHDanielsonNBaiXMarfeoAYuLYGordonAPurcaroMJMotelowJEAgarwalREllensDJGolombJDShamyMCFZhangHCarlsonCCDoyleWDevinskyOVivesKSpencerDDSpencerSSSchevonCZaveriHPBlumenfeldHImpaired consciousness in temporal lobe seizures:role of cortical slow activityBrain20101331237643777210815512995886
EvangelistaEBènarCBoniniFCarronRColombetBRègisJBartolomeiFDoes the thalamo-cortical synchrony play a role in seizure termination?Front Neurol20156192263888344555023
KlimeschWSausengPHanslmayrSEeg alpha oscillations: the inhibition-timing hypothesisBrain Res Rev2007537638816887192
Ulate-CamposACouhlinFGaínza-LeinMSánchez FernándezIPearlPLLoddenkemperTAutomated seizure detection systems and their effectiveness for each type of seizureSeizure201640881011:STN:280:DC%2BC2s7mslSkug%3D%3D27376911
Hugle M, Heller S, Watter M, Blum M, Manzouri F, Dumpelmann M, Schulze-Bonhage A, Woias P, Boedecker J (2018) Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller. arXiv:1806.04549
SchiffNDNauvelTNVictorJDLarge-scale brain dynamics in disorders of consciousnessCurr Opin Neurobiol2014257141:CAS:528:DC%2BC2cXlvVSktbs%3D24709594
Boubchir L, Boubaker D, Pangracious V (2017) A review of feature extraction for eeg epileptic seizure detection and classification. In: IEEE 40th international conference on telecommunications and signal processing. IEEE, pp 456–460
Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: Gazzaniga M (ed) The cognitive neurosciences, chapter 23. MIT Press, Cambridge, pp 327–338
LiuYWangJWang CaiLChenYQinYEpileptic seizure detection from eeg signals with phase-amplitude cross-frequency coupling and support vector machineInt J Mod Phys20173281850086
Boubchir L, Al-Maadeed S, Bouridane A (2014) Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of eeg data. In: 26th international conference on microelectronics. IEEE, pp 32–35
AlotaibyTNAlshebeiliSAAlshawiTAhmadIAbd El-SamieFEEeg seizure detection and prediction algorithms: a surveyEURASIP J Adv Signal Process2014183121
KlimeschWDoppelmayrMPachingerTRusseggerHEvent-related desynchronization in the alpha band and the processing of semantic informationCogn Brain Res19976283941:STN:280:DyaK1c7htFSlsQ%3D%3D
SchevonCACappellJEmersonRGIslerJRGrievePGGoodmanRRMcKhannGMWienerHDoyleWKKuznieckyRDevinskyOGillianFGCortical abnormalities in epilepsy revealed by local eeg synchronyNeuroimage20073511401481:STN:280:DC%2BD2s7gslGksg%3D%3D172242811994936
K Edakawa (840_CR22) 2016; 6
I Samengo (840_CR42) 2013; 34
C Koch (840_CR34) 2016; 17
R de Ruyter van Steveninck (840_CR19) 1988; 234
DJ Englot (840_CR23) 2010; 133
N Cámpora (840_CR14) 2019; 9
LJ Cauller (840_CR15) 1988; 72
Y Liu (840_CR37) 2017; 32
840_CR47
W Klimesch (840_CR31) 1997; 6
S Courtens (840_CR16) 2016; 6
Y Liu (840_CR35) 2012; 20
W Klimesch (840_CR32) 1999; 7
Y-C Liu (840_CR36) 2013; 13
L Feng (840_CR25) 2017; 37
F Crick (840_CR17) 1989; 2
J Bancaud (840_CR4) 1965
840_CR10
840_CR11
R Harner (840_CR27) 2009; 40
F Bonini (840_CR8) 2016; 12
H Blumenfeld (840_CR7) 2012; 11
CP Warren (840_CR51) 2010; 104
HL Bryant (840_CR12) 1976; 260
VR Romei (840_CR41) 2007; 30
G Wang (840_CR50) 2017; 20
C Donos (840_CR21) 2015; 25
AD Norden (840_CR38) 2002; 3
840_CR20
CA Schevon (840_CR45) 2007; 35
NB Danielson (840_CR18) 2011; 24
CM Gray (840_CR26) 1989; 338
N Cámpora (840_CR13) 2016; 55
AT Tzallas (840_CR48) 2012
L Orosco (840_CR39) 2013; 33
MJ Redinbaugh (840_CR40) 2020; 106
TN Alotaiby (840_CR2) 2014; 183
M Arthuis (840_CR3) 2009; 132
SB Wilson (840_CR52) 2002; 113
F Bartolomei (840_CR5) 2008; 131
E Evangelista (840_CR24) 2015; 6
840_CR28
840_CR29
P Sauseng (840_CR43) 2005; 22
P Sauseng (840_CR44) 2011; 2
A Kharbouch (840_CR30) 2011; 22
W Klimesch (840_CR33) 2007; 53
H Berger (840_CR6) 1929; 87
840_CR9
A Ulate-Campos (840_CR49) 2016; 40
ND Schiff (840_CR46) 2014; 25
840_CR1
References_xml – reference: FengLMotelowJEMaCBicheWMcCaffertyCSmithNLiuMZhanQJiaRXiaoBDuqueABlumenfeldHSeizures and sleep in the thalamus: Focal limbic seizuresshow divergent activity patterns in different thalamic nucleiJ Neurosci2017374711441114541:CAS:528:DC%2BC1cXhtlCjsb%2FO290665565700426
– reference: SamengoIGollischTSpike-triggered covariance revisited: geometric proof, symmetry properties and extension beyond gaussian stimuliJ Comput Neurosci201334113716122798148
– reference: BergerHüber das elektroenkephalogramm des menschenArch Psychiatr Nervenkrankh192987527570
– reference: CámporaNKochenSSubjective and objective characteristics of altered consciousness during epileptic seizuresEpilepsy Behav20165512813226773683
– reference: Aggarval G, Ghandi TK (2017) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–4
– reference: KharbouchAShoebAGuttagJCashSSAn algorithm for seizure onset detection using intracranial eegEpilepsy Behav2011221S29S35220785153713785
– reference: BlumenfeldHImpaired consciousness in epilepsyLancet Neurol2012119814826228987353732214
– reference: BoniniFLambertIWendlingFWMcGonigalABartolomeiFAltered synchrony and loss of consciousness during frontal lobe seizuresLancet Neurol201612211701175
– reference: BartolomeiFChauvelPWendlingFEpileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral eegBrain200813171818183018556663
– reference: AlotaibyTNAlshebeiliSAAlshawiTAhmadIAbd El-SamieFEEeg seizure detection and prediction algorithms: a surveyEURASIP J Adv Signal Process2014183121
– reference: KochCMassiminiMBolyMBTononiGNeural correlates of consciousness: progress and problemsNat Rev Neurosci2016173073211:CAS:528:DC%2BC28XmsVartLY%3D27094080
– reference: WangGSunZTaoRLiKBaoGYanXEpileptic seizure detection based on partial directed coherence analysisIEEE J Biomed Health Inform2017203873879
– reference: EdakawaKYanagisawaTKishimaHFukumaROshinoSKooHMKobayashiMTanakeMYoshimineTDetection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalographySci Rep20166254221:CAS:528:DC%2BC28XnsVeltrg%3D271471194857088
– reference: Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–60
– reference: Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: Gazzaniga M (ed) The cognitive neurosciences, chapter 23. MIT Press, Cambridge, pp 327–338
– reference: WarrenCPHuSSteadMBrinkmannBHBowerMRBWorrellGASynchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnectedJ Neurophysiol2010104635303539209266103007634
– reference: WilsonSBEmersonRSpike detection: a review and comparison of algorithmsClin Neurophysiol2002113121873188112464324
– reference: EnglotDJYangLYHamidHDanielsonNBaiXMarfeoAYuLYGordonAPurcaroMJMotelowJEAgarwalREllensDJGolombJDShamyMCFZhangHCarlsonCCDoyleWDevinskyOVivesKSpencerDDSpencerSSSchevonCZaveriHPBlumenfeldHImpaired consciousness in temporal lobe seizures:role of cortical slow activityBrain20101331237643777210815512995886
– reference: RomeiVRGrossJThutGOn the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?J Neurosci2007302586928697
– reference: SchiffNDNauvelTNVictorJDLarge-scale brain dynamics in disorders of consciousnessCurr Opin Neurobiol2014257141:CAS:528:DC%2BC2cXlvVSktbs%3D24709594
– reference: CaullerLJKulicsATComparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkeyExp Brain Res19887235845921:STN:280:DyaL1M7ntFSntw%3D%3D3234504
– reference: Heller S MH, Nematollahi I, Manzouri F, Dümpelmann M, Schulze-Bonhage, A, Boedecker JPW (2018). Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 40th annual international conference of the ieee engineering in medicine and biology society, pp 2268–2271
– reference: CámporaNMininniCJKochenSLewSESeizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalographyScientific Reports20199120022318829566934586
– reference: CrickFKochCTowards a neurobiological theory of consciousnessSemin Neurosci19892263275
– reference: Hugle M, Heller S, Watter M, Blum M, Manzouri F, Dumpelmann M, Schulze-Bonhage A, Woias P, Boedecker J (2018) Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller. arXiv:1806.04549
– reference: de Ruyter van SteveninckRBialekWReal-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transmission in short spike sequencesProc R Soc Lond Ser B Biol Sci19882341277379414
– reference: LiuYWangJWang CaiLChenYQinYEpileptic seizure detection from eeg signals with phase-amplitude cross-frequency coupling and support vector machineInt J Mod Phys20173281850086
– reference: SchevonCACappellJEmersonRGIslerJRGrievePGGoodmanRRMcKhannGMWienerHDoyleWKKuznieckyRDevinskyOGillianFGCortical abnormalities in epilepsy revealed by local eeg synchronyNeuroimage20073511401481:STN:280:DC%2BD2s7gslGksg%3D%3D172242811994936
– reference: SausengPFeldheimJFFreunbergerRHummelFCRight prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attentionFront Psychol20112241220071793186913
– reference: GrayCMKönigPEngelAKSingerWOscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus propertiesNature198933862133341:STN:280:DyaL1M7lvFChuw%3D%3D2922061
– reference: LiuY-CLinC-CKLinJ-JTSunY-NModel-based spike detection of epileptic eeg dataSensors2013139125361254724048343
– reference: SausengPKlimeschWStadlerWSchabusMDoppelmayrMHanslmayrSGruberWRBirbaumerNA shift of visual spatial attention is selectively associated with human eeg alpha activityEur J Neurosci20052211291729261:STN:280:DC%2BD2MnksVKjuw%3D%3D16324126
– reference: EvangelistaEBènarCBoniniFCarronRColombetBRègisJBartolomeiFDoes the thalamo-cortical synchrony play a role in seizure termination?Front Neurol20156192263888344555023
– reference: Boubchir L, Al-Maadeed S, Bouridane A (2014) Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of eeg data. In: 26th international conference on microelectronics. IEEE, pp 32–35
– reference: KlimeschWSausengPHanslmayrSEeg alpha oscillations: the inhibition-timing hypothesisBrain Res Rev2007537638816887192
– reference: BryantHLSegundoJPSpike initiation by trans-membrane current: a white-noise analysisJ Physiol197626022793141:STN:280:DyaE2s%2FjtFehtg%3D%3D9785191309092
– reference: OroscoLGarcés CorreaALaciarEReview: a survey of performance and techniques for automatic epilepsy detectionJ Med Biol Eng2013336526537
– reference: LiuYZhouWYuanQChenSAutomatic seizure detection using wavelet transform and svm in long-term intracranial eegIEEE Trans Neural Syst Rehabil Eng201220674975522868635
– reference: ArthuisMValtonLRègisJChauvelPWendlingFNaccacheLBernardCBartolomeiFImpaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronizationBrain200913282091210119416952
– reference: TzallasATTsipourasMGTsalikakisDGKarvounisECAstrakasLKonitsiotisSTzaphlidouMStevanovicDAutomated epileptic seizure detection methods: A review studyEpilepsy-histological, electroencephalographic and psychological aspects, chapter 42012RijekaIntechOpen7598
– reference: Boubchir L, Boubaker D, Pangracious V (2017) A review of feature extraction for eeg epileptic seizure detection and classification. In: IEEE 40th international conference on telecommunications and signal processing. IEEE, pp 456–460
– reference: CourtensSColombetBCTrèbuchonATBènarCGraph measures of node strength for characterizing preictal synchrony in partial epilepsyBrain Connect20166753053927140287
– reference: HarnerRAutomatic eeg spike detectionClin EEG Neurosci200940426227019780347
– reference: DanielsonNBGuoJNBlumenfeldHThe default mode network and altered consciousness in epilepsyBehav Neurol20112415565214478993150226
– reference: KlimeschWDoppelmayrMPachingerTRusseggerHEvent-related desynchronization in the alpha band and the processing of semantic informationCogn Brain Res19976283941:STN:280:DyaK1c7htFSlsQ%3D%3D
– reference: KlimeschWDoppelmayrMSchwaigerJAuingerPWinklerTParadoxical’ alpha synchronization in a memory taskEpilepsy Behav1999744935011:STN:280:DyaK1M7pt1Wqsg%3D%3D
– reference: NordenADBlumenfeldHThe role of subcortical structures in human epilepsyEpilepsy Behav20023321923112662601
– reference: Boubchir L, Al-Maadeed S, Bouridane A, Chèrif AA (2015) Time-frequency image descriptors-based features for eeg epileptic seizure activities detection and classification. In IEEE 40th international conference on acoustics, speech and signal processing. IEEE, pp 867–871
– reference: DonosCDümpelmannMSchulze-BonhageAEarly seizure detection algorithm based on intracranial eeg and random forest classificationInt J Neural Syst2015255155002326022388
– reference: Ulate-CamposACouhlinFGaínza-LeinMSánchez FernándezIPearlPLLoddenkemperTAutomated seizure detection systems and their effectiveness for each type of seizureSeizure201640881011:STN:280:DC%2BC2s7mslSkug%3D%3D27376911
– reference: RedinbaughMJPhillipsJMKambiNAMohantaSAndrykSDooleyGLAfrasiabiMRazASaalmannYBThalamus modulates consciousness via layer-specific control of cortexNeuron20201061667532053769
– reference: BancaudJTalairachJBonisASchaubCSziklaGBorelPBordas FerrerMLa stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique1965ParisMasson
– ident: 840_CR9
  doi: 10.1109/ICM.2014.7071799
– ident: 840_CR10
  doi: 10.1109/ICASSP.2015.7178093
– ident: 840_CR28
  doi: 10.1109/EMBC.2018.8512735
– volume: 3
  start-page: 219
  issue: 3
  year: 2002
  ident: 840_CR38
  publication-title: Epilepsy Behav
  doi: 10.1016/S1525-5050(02)00029-X
– volume: 33
  start-page: 526
  issue: 6
  year: 2013
  ident: 840_CR39
  publication-title: J Med Biol Eng
  doi: 10.5405/jmbe.1463
– volume: 22
  start-page: 2917
  issue: 11
  year: 2005
  ident: 840_CR43
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2005.04482.x
– volume: 12
  start-page: 1170
  issue: 2
  year: 2016
  ident: 840_CR8
  publication-title: Lancet Neurol
– volume: 2
  start-page: 241
  year: 2011
  ident: 840_CR44
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2011.00241
– volume: 2
  start-page: 263
  year: 1989
  ident: 840_CR17
  publication-title: Semin Neurosci
– volume: 6
  start-page: 83
  issue: 2
  year: 1997
  ident: 840_CR31
  publication-title: Cogn Brain Res
  doi: 10.1016/S0926-6410(97)00018-9
– volume: 32
  start-page: 1850086
  issue: 8
  year: 2017
  ident: 840_CR37
  publication-title: Int J Mod Phys
  doi: 10.1142/S0217979218500868
– volume: 6
  start-page: 25422
  year: 2016
  ident: 840_CR22
  publication-title: Sci Rep
  doi: 10.1038/srep25422
– volume: 131
  start-page: 1818
  issue: 7
  year: 2008
  ident: 840_CR5
  publication-title: Brain
  doi: 10.1093/brain/awn111
– volume: 34
  start-page: 137
  issue: 1
  year: 2013
  ident: 840_CR42
  publication-title: J Comput Neurosci
  doi: 10.1007/s10827-012-0411-y
– volume: 113
  start-page: 1873
  issue: 12
  year: 2002
  ident: 840_CR52
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00297-3
– volume: 30
  start-page: 8692
  issue: 25
  year: 2007
  ident: 840_CR41
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0160-10.2010
– ident: 840_CR1
  doi: 10.1101/212563
– volume: 37
  start-page: 11441
  issue: 47
  year: 2017
  ident: 840_CR25
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1011-17.2017
– volume: 104
  start-page: 3530
  issue: 6
  year: 2010
  ident: 840_CR51
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00368.2010
– volume: 234
  start-page: 379
  issue: 1277
  year: 1988
  ident: 840_CR19
  publication-title: Proc R Soc Lond Ser B Biol Sci
  doi: 10.1098/rspb.1988.0055
– volume: 11
  start-page: 814
  issue: 9
  year: 2012
  ident: 840_CR7
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70188-6
– ident: 840_CR20
– volume: 55
  start-page: 128
  year: 2016
  ident: 840_CR13
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2015.12.003
– volume: 260
  start-page: 279
  issue: 2
  year: 1976
  ident: 840_CR12
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1976.sp011516
– volume: 22
  start-page: S29
  issue: 1
  year: 2011
  ident: 840_CR30
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2011.08.031
– volume: 6
  start-page: 192
  year: 2015
  ident: 840_CR24
  publication-title: Front Neurol
  doi: 10.3389/fneur.2015.00192
– ident: 840_CR29
  doi: 10.1109/IJCNN.2018.8489493
– volume: 9
  start-page: 20022
  issue: 1
  year: 2019
  ident: 840_CR14
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-56548-y
– volume: 133
  start-page: 3764
  issue: 12
  year: 2010
  ident: 840_CR23
  publication-title: Brain
  doi: 10.1093/brain/awq316
– volume-title: La stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique
  year: 1965
  ident: 840_CR4
– volume: 183
  start-page: 1
  year: 2014
  ident: 840_CR2
  publication-title: EURASIP J Adv Signal Process
– volume: 35
  start-page: 140
  issue: 1
  year: 2007
  ident: 840_CR45
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.009
– volume: 338
  start-page: 334
  issue: 6213
  year: 1989
  ident: 840_CR26
  publication-title: Nature
  doi: 10.1038/338334a0
– volume: 53
  start-page: 63
  issue: 7
  year: 2007
  ident: 840_CR33
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2006.06.003
– volume: 20
  start-page: 749
  issue: 6
  year: 2012
  ident: 840_CR35
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2206054
– volume: 7
  start-page: 493
  issue: 4
  year: 1999
  ident: 840_CR32
  publication-title: Epilepsy Behav
– volume: 25
  start-page: 7
  year: 2014
  ident: 840_CR46
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2013.10.007
– ident: 840_CR11
  doi: 10.1109/TSP.2017.8076027
– start-page: 75
  volume-title: Epilepsy-histological, electroencephalographic and psychological aspects, chapter 4
  year: 2012
  ident: 840_CR48
– volume: 40
  start-page: 88
  year: 2016
  ident: 840_CR49
  publication-title: Seizure
  doi: 10.1016/j.seizure.2016.06.008
– volume: 72
  start-page: 584
  issue: 3
  year: 1988
  ident: 840_CR15
  publication-title: Exp Brain Res
  doi: 10.1007/BF00250603
– volume: 106
  start-page: 66
  issue: 1
  year: 2020
  ident: 840_CR40
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.01.005
– volume: 20
  start-page: 873
  issue: 3
  year: 2017
  ident: 840_CR50
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2015.2424074
– volume: 87
  start-page: 570
  issue: 527
  year: 1929
  ident: 840_CR6
  publication-title: Arch Psychiatr Nervenkrankh
– volume: 6
  start-page: 530
  issue: 7
  year: 2016
  ident: 840_CR16
  publication-title: Brain Connect
  doi: 10.1089/brain.2015.0397
– volume: 24
  start-page: 55
  issue: 1
  year: 2011
  ident: 840_CR18
  publication-title: Behav Neurol
  doi: 10.1155/2011/912720
– volume: 17
  start-page: 307
  year: 2016
  ident: 840_CR34
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2016.22
– volume: 13
  start-page: 12536
  issue: 9
  year: 2013
  ident: 840_CR36
  publication-title: Sensors
  doi: 10.3390/s130912536
– volume: 132
  start-page: 2091
  issue: 8
  year: 2009
  ident: 840_CR3
  publication-title: Brain
  doi: 10.1093/brain/awp086
– ident: 840_CR47
– volume: 40
  start-page: 262
  issue: 4
  year: 2009
  ident: 840_CR27
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005940904000408
– volume: 25
  start-page: 1550023
  issue: 5
  year: 2015
  ident: 840_CR21
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065715500239
SSID ssj0009259
Score 2.2927775
Snippet The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 461
SubjectTerms Algorithms
Analysis of covariance
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Complex Systems
Computer Appl. in Life Sciences
Consciousness
Convulsions & seizures
Covariance
EEG
Electroencephalography
Epilepsy
Frequencies
Frequency analysis
Neurobiology
Neurosciences
Original Article
Patients
Principal components analysis
Seizures
Variance
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6WXAi2ly6Nypd5ao7wcO8cVWliBxImV6CnK2I6EQAlis0jLqT-dsfNAvCpxzthxnBn7G8_MZ4BfsZGYotTcSrTkoFjLCxOlXBUyTrRCR5Hisi3O0tk8ObkQF11R2KLPdu9Dkn6lHordPF0Vd-6OI4EP-OojrIlQZWoEa5Pjv6fTR7LdyF-SFsQubklq0BXLvN7L0w3pBcp8ESH1G8_ROsz7Ibf5JlcHywYP9P0zNsf3ftMGfO6QKJu0qrMJH2z1Bdb7Wx5YZ_Rf4Z-rEuGsqAwrb9vE6xUnJ72-vrOG6fqOvG2nOiTR8pswwsHM2MYneVW-oR5ooduqT1aXbGEv75fUD3MVLuzSHTJr2jgJuLLp9Ji1p0fuHH8L5kfT88MZ7-5t4DqWouFCoEOdBWqMMCwwQVESkFQorQpFaaUsdVGiESpIyOEKE4OoEtomU2oTSoy_waiqK_sdmKG1mpTJOVVZkpk0M5lKdYBRIUtB8GIMYf_zct2Rmru7Na7zgY7ZT3FOU5z7Kc5XY_g9tLlpKT3-K73X60Temfcip3UudBHmlAbwc3hMhumiLTRT9ZJkCKgSWCT3eQzbrS4NryPMTDBaBWP40-vFY-dvj2XnfeK78ClyquVTD_dg1Nwu7T5BqAZ_dBbzAJylEqA
  priority: 102
  providerName: Springer Nature
Title Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
URI https://link.springer.com/article/10.1007/s00422-020-00840-y
https://www.ncbi.nlm.nih.gov/pubmed/32656680
https://www.proquest.com/docview/2571045864
https://www.proquest.com/docview/2423515094
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6a5NJLmz7jPBYVemtF_Zb2VLbBuyGBUEoXtidjPQyBYKfZ3cDmlJ-eGVn2UkJzMtiSLTwjzTdvgM-JESpXQnMrlEUFxVpemTjnshJJqqWiEikUbXGZn83T80W28Aa3pQ-r7M9Ed1CbVpON_BuyVkROvTz9fvOXU9co8q76Fho7sBehpCE-l9PZtuhu7JqlhQn5L5EdfNKMS51zxa84KU9UUj7km38F0xO0-cRT6gTQdB9eeeTIJh2p38AL27yF131XBuY36Tt4oKwOzqrGsPq2C5TecFSq2-s7a5hu71A7JlLjiK4eCUPcyoxduaCsxk3UQxnnLkuTtTVb2qv7Nb6HUUYKuyKjsEZBh0CTFcWMddYesru_h_m0-H16xn2fBa4Tka14lilCiZXSKlZRpVKV1Qj8pBJWRllthah1VSuTyTBFBSlKjVIyRbGW45xIqOQD7DZtYw-AGTxbkfikBI3TscnHZixzHaq4EnWGcCCAqP_JpfZFyKkXxnU5lE92hCmRMKUjTLkJ4Msw56YrwfHs6OOedqXfjstyyzwBfBoe40Yi7wj-qXaNYxBYIrhDdTeAjx3Nh88hxkXYK8MAvvZMsH35_9dy-PxajuBlTAzoQgOPYXd1u7YnCHFWagQ7YiFGjptHsDeZ_bko8PqjuPz5C-_O48kjP0f9BQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvB-BAkaCE1jk4cTZA0I8tmxpWSHUSr2FjO1IlaqkdHeLlhO_iN_IjPNYoYreeo7tRJnP4288L4DnidWYoTbSaXRkoDgnSxtnMi91okyOXCKFoy1m2fRAfT5MDzfgT58Lw2GVvU70ito2hu_IXxO0InbqZertyQ_JXaPYu9q30GhhsetWP8lkm7_Z-UjyfRHH25P9D1PZdRWQJtHpQqYpMicq0WCMUYkK04poTo7a5VFaOa0rU1Zo0zxUZA5EyiLmipR4RnMijQmtewU2FWe0jmDz_WT29du6zG_s27OFCXtMCYBdmo5P1vPltiSba1zEPpSrf4_Cc_z2nG_WH3nbN-F6x1XFuxZct2DD1bfhRt8HQnRq4Q785jwSKcraiuq0Dc1eSTLjm-MzZ4VpzsgeZ3DRiLYCiiCmLKxb-DCw2k80Q-HoNi9UNJWYu6NfS1pHcA6MOOJraENHK1FbMZl8Eu39Et_034WDS5HBPRjVTe0egLCkzQlubHaN1dhmYzvOMxNiXOoqJQISQNT_5MJ0Zc-5-8ZxMRRs9oIpSDCFF0yxCuDlMOekLfpx4eitXnZFpwDmxRquATwbHtPWZX8M_almSWOIyhKdJAM7gPutzIfXEasmop2HAbzqQbBe_P_f8vDib3kKV6f7X_aKvZ3Z7iO4FjMYfWDiFowWp0v3mAjWAp90qBbw_bI30l8fAjcN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wSAwXARUdRGwTPWmHeffsgRgju4IY4kGSvQ1T3T0JCZlBdheznvxd_Dqqeh4bQuTGebp7JlNfV3_V9QJ4HxmFKSotrUJLBoq1sjBhKrNCRbHOkEukcLTFSXp4Gn8fJ-MluOlyYTisstOJTlGbWvMd-R5BK2CnXhrvlW1YxM-D0efL35I7SLGntWun0UDk2M7_kPk22T86IFl_CMPR8NfXQ9l2GJA6UslUJgkyPypQY4hBgTEmJVGeDJXNgqS0SpW6KNEkmR-TaRDEBjGLSaGnNCdQGNG6y7CqImJVtJfUWC0K_oauUZsfse-UoNgm7Li0PVd4S7LhxuXsfTm_eyjeY7r3vLTu8BttwNOWtYovDcw2YclWz2C96wghWgXxHP5xRokURWVEedUEac8lGfT1xbU1QtfXZJkzzGhEUwtFEGcWxk5dQFjlJuq-hHSTISrqUkzs-d8ZrSM4G0ac84W0pkOWSK4YDr-J5qaJ7_xfwOmjSGALVqq6sq9AGNLrBDw2wAbxwKQDM8hS7WNYqDIhKuJB0P3kXLcF0LkPx0Xel252gslJMLkTTD734GM_57Ip__Hg6J1OdnmrCib5ArgevOsf0yZmzwz9qXpGY4jUErEkU9uDl43M-9cRvybKnfkefOpAsFj8_9-y_fC3vIUntH3yH0cnx69hLWQsugjFHViZXs3sG2JaU9x1kBZw9th76BYnCznU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-+and+frequency-resolved+covariance+analysis+for+detection+and+characterization+of+seizures+from+intracraneal+EEG+recordings&rft.jtitle=Biological+cybernetics&rft.au=Maidana+Capit%C3%A1n+Melisa&rft.au=C%C3%A1mpora+Nuria&rft.au=Sigvard%2C+Claudio+Sebasti%C3%A1n&rft.au=Kochen%2C+Silvia&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0340-1200&rft.eissn=1432-0770&rft.volume=114&rft.issue=4-5&rft.spage=461&rft.epage=471&rft_id=info:doi/10.1007%2Fs00422-020-00840-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon