Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and ch...
Saved in:
Published in | Biological cybernetics Vol. 114; no. 4-5; pp. 461 - 471 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0340-1200 1432-0770 1432-0770 |
DOI | 10.1007/s00422-020-00840-y |
Cover
Abstract | The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. |
---|---|
AbstractList | The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity. |
Author | Kochen, Silvia Maidana Capitán, Melisa Cámpora, Nuria Sigvard, Claudio Sebastián Samengo, Inés |
Author_xml | – sequence: 1 givenname: Melisa surname: Maidana Capitán fullname: Maidana Capitán, Melisa organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche – sequence: 2 givenname: Nuria surname: Cámpora fullname: Cámpora, Nuria organization: Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce “Néstor Kirchner”, Universidad Nacional Arturo Jauretche – sequence: 3 givenname: Claudio Sebastián surname: Sigvard fullname: Sigvard, Claudio Sebastián organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche – sequence: 4 givenname: Silvia surname: Kochen fullname: Kochen, Silvia organization: Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce “Néstor Kirchner”, Universidad Nacional Arturo Jauretche – sequence: 5 givenname: Inés orcidid: 0000-0002-5241-3697 surname: Samengo fullname: Samengo, Inés email: ines.samengo@gmail.com organization: Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32656680$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3TAQRkVJaW5-XqCLYuimGzcjWbLsZQm3SSCQTboWkjxKFWwpleyAs-qjV7k3bSGLrATDOaOZ-Y7IQYgBCflI4SsFkGcZgDNWA4MaoONQr-_IhvKmlKSEA7KBphQpAzgkRznfA0DPRP-BHDasFW3bwYb8vvUT1pUOQ-US_low2LVOmOP4iENl46NOXgeLhdDjmn2uXEzVgDPa2cewE-1PnbSdMfknvStGV2X0T0vpU7rGqfJhLkTSAfVYbbcXVUIb0-DDXT4h750eM56-vMfkx_ft7fllfX1zcXX-7bq2jRRzLYTpe9pqYw0zVBtuhKM964zEjgqHUjqrnRlEB5wXkg_GdLzjsi0OlaY5Jl_2fR9SLGvmWU0-WxzHMlRcsmKcNYIK6HlBP79C7-OSyv6FEpICF137TH16oRYz4aAekp90WtXf2xaA7QGbYs4J3T-EgnoOUO0DVCVAtQtQrUXqXknWz7urlgv68W212au5_BPuMP0f-w3rD0klsZQ |
CitedBy_id | crossref_primary_10_3390_s21196343 crossref_primary_10_1093_nc_niae003 |
Cites_doi | 10.1109/ICM.2014.7071799 10.1109/ICASSP.2015.7178093 10.1109/EMBC.2018.8512735 10.1016/S1525-5050(02)00029-X 10.5405/jmbe.1463 10.1111/j.1460-9568.2005.04482.x 10.3389/fpsyg.2011.00241 10.1016/S0926-6410(97)00018-9 10.1142/S0217979218500868 10.1038/srep25422 10.1093/brain/awn111 10.1007/s10827-012-0411-y 10.1016/S1388-2457(02)00297-3 10.1523/JNEUROSCI.0160-10.2010 10.1101/212563 10.1523/JNEUROSCI.1011-17.2017 10.1152/jn.00368.2010 10.1098/rspb.1988.0055 10.1016/S1474-4422(12)70188-6 10.1016/j.yebeh.2015.12.003 10.1113/jphysiol.1976.sp011516 10.1016/j.yebeh.2011.08.031 10.3389/fneur.2015.00192 10.1109/IJCNN.2018.8489493 10.1038/s41598-019-56548-y 10.1093/brain/awq316 10.1016/j.neuroimage.2006.11.009 10.1038/338334a0 10.1016/j.brainresrev.2006.06.003 10.1109/TNSRE.2012.2206054 10.1016/j.conb.2013.10.007 10.1109/TSP.2017.8076027 10.1016/j.seizure.2016.06.008 10.1007/BF00250603 10.1016/j.neuron.2020.01.005 10.1109/JBHI.2015.2424074 10.1089/brain.2015.0397 10.1155/2011/912720 10.1038/nrn.2016.22 10.3390/s130912536 10.1093/brain/awp086 10.1177/155005940904000408 10.1142/S0129065715500239 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION NPM 3V. 7QO 7TK 7X7 7XB 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ JQ2 K7- K9. L7M LK8 M0N M0S M1P M2P M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1007/s00422-020-00840-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-0770 |
EndPage | 471 |
ExternalDocumentID | 32656680 10_1007_s00422_020_00840_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica grantid: PICT 2016 Raíces 1004 funderid: http://dx.doi.org/10.13039/501100003074 – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas grantid: PIP 0256 funderid: http://dx.doi.org/10.13039/501100002923 – fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica grantid: PICT 2016 0775 funderid: http://dx.doi.org/10.13039/501100003074 – fundername: Universidad Nacional de Cuyo – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas grantid: PIP 0256 – fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica grantid: PICT 2016 Raíces 1004 – fundername: Agencia Nacional de Promoción Cientìfica y Tecnológica grantid: PICT 2016 0775 |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 1N0 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBC EBD EBLON EBS ECS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAS LK8 LLZTM M0L M0N M1P M2P M4Y M7P MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7TK 7XB 8AL 8FD 8FK ABRTQ FR3 H8D JQ2 K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c375t-55b9916abcb2b1ab4b5f1928b7e815fe77fcafbd580449914dbb8484766ab17b3 |
IEDL.DBID | 8FG |
ISSN | 0340-1200 1432-0770 |
IngestDate | Fri Sep 05 11:30:22 EDT 2025 Fri Jul 25 19:01:33 EDT 2025 Thu Apr 03 07:07:44 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 04:21:56 EDT 2025 Fri Feb 21 02:36:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4-5 |
Keywords | Consciousness EEG Epilepsy Principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-55b9916abcb2b1ab4b5f1928b7e815fe77fcafbd580449914dbb8484766ab17b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5241-3697 |
PMID | 32656680 |
PQID | 2571045864 |
PQPubID | 54056 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2423515094 proquest_journals_2571045864 pubmed_primary_32656680 crossref_primary_10_1007_s00422_020_00840_y crossref_citationtrail_10_1007_s00422_020_00840_y springer_journals_10_1007_s00422_020_00840_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems |
PublicationTitle | Biological cybernetics |
PublicationTitleAbbrev | Biol Cybern |
PublicationTitleAlternate | Biol Cybern |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | KlimeschWDoppelmayrMSchwaigerJAuingerPWinklerTParadoxical’ alpha synchronization in a memory taskEpilepsy Behav1999744935011:STN:280:DyaK1M7pt1Wqsg%3D%3D WilsonSBEmersonRSpike detection: a review and comparison of algorithmsClin Neurophysiol2002113121873188112464324 BancaudJTalairachJBonisASchaubCSziklaGBorelPBordas FerrerMLa stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique1965ParisMasson de Ruyter van SteveninckRBialekWReal-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transmission in short spike sequencesProc R Soc Lond Ser B Biol Sci19882341277379414 NordenADBlumenfeldHThe role of subcortical structures in human epilepsyEpilepsy Behav20023321923112662601 DanielsonNBGuoJNBlumenfeldHThe default mode network and altered consciousness in epilepsyBehav Neurol20112415565214478993150226 DonosCDümpelmannMSchulze-BonhageAEarly seizure detection algorithm based on intracranial eeg and random forest classificationInt J Neural Syst2015255155002326022388 WarrenCPHuSSteadMBrinkmannBHBowerMRBWorrellGASynchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnectedJ Neurophysiol2010104635303539209266103007634 OroscoLGarcés CorreaALaciarEReview: a survey of performance and techniques for automatic epilepsy detectionJ Med Biol Eng2013336526537 CámporaNKochenSSubjective and objective characteristics of altered consciousness during epileptic seizuresEpilepsy Behav20165512813226773683 SamengoIGollischTSpike-triggered covariance revisited: geometric proof, symmetry properties and extension beyond gaussian stimuliJ Comput Neurosci201334113716122798148 BryantHLSegundoJPSpike initiation by trans-membrane current: a white-noise analysisJ Physiol197626022793141:STN:280:DyaE2s%2FjtFehtg%3D%3D9785191309092 ArthuisMValtonLRègisJChauvelPWendlingFNaccacheLBernardCBartolomeiFImpaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronizationBrain200913282091210119416952 SausengPKlimeschWStadlerWSchabusMDoppelmayrMHanslmayrSGruberWRBirbaumerNA shift of visual spatial attention is selectively associated with human eeg alpha activityEur J Neurosci20052211291729261:STN:280:DC%2BD2MnksVKjuw%3D%3D16324126 CrickFKochCTowards a neurobiological theory of consciousnessSemin Neurosci19892263275 EdakawaKYanagisawaTKishimaHFukumaROshinoSKooHMKobayashiMTanakeMYoshimineTDetection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalographySci Rep20166254221:CAS:528:DC%2BC28XnsVeltrg%3D271471194857088 HarnerRAutomatic eeg spike detectionClin EEG Neurosci200940426227019780347 LiuY-CLinC-CKLinJ-JTSunY-NModel-based spike detection of epileptic eeg dataSensors2013139125361254724048343 KharbouchAShoebAGuttagJCashSSAn algorithm for seizure onset detection using intracranial eegEpilepsy Behav2011221S29S35220785153713785 CámporaNMininniCJKochenSLewSESeizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalographyScientific Reports20199120022318829566934586 GrayCMKönigPEngelAKSingerWOscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus propertiesNature198933862133341:STN:280:DyaL1M7lvFChuw%3D%3D2922061 LiuYZhouWYuanQChenSAutomatic seizure detection using wavelet transform and svm in long-term intracranial eegIEEE Trans Neural Syst Rehabil Eng201220674975522868635 TzallasATTsipourasMGTsalikakisDGKarvounisECAstrakasLKonitsiotisSTzaphlidouMStevanovicDAutomated epileptic seizure detection methods: A review studyEpilepsy-histological, electroencephalographic and psychological aspects, chapter 42012RijekaIntechOpen7598 CaullerLJKulicsATComparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkeyExp Brain Res19887235845921:STN:280:DyaL1M7ntFSntw%3D%3D3234504 Heller S MH, Nematollahi I, Manzouri F, Dümpelmann M, Schulze-Bonhage, A, Boedecker JPW (2018). Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 40th annual international conference of the ieee engineering in medicine and biology society, pp 2268–2271 RomeiVRGrossJThutGOn the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?J Neurosci2007302586928697 Boubchir L, Al-Maadeed S, Bouridane A, Chèrif AA (2015) Time-frequency image descriptors-based features for eeg epileptic seizure activities detection and classification. In IEEE 40th international conference on acoustics, speech and signal processing. IEEE, pp 867–871 SausengPFeldheimJFFreunbergerRHummelFCRight prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attentionFront Psychol20112241220071793186913 CourtensSColombetBCTrèbuchonATBènarCGraph measures of node strength for characterizing preictal synchrony in partial epilepsyBrain Connect20166753053927140287 KochCMassiminiMBolyMBTononiGNeural correlates of consciousness: progress and problemsNat Rev Neurosci2016173073211:CAS:528:DC%2BC28XmsVartLY%3D27094080 Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–60 WangGSunZTaoRLiKBaoGYanXEpileptic seizure detection based on partial directed coherence analysisIEEE J Biomed Health Inform2017203873879 BergerHüber das elektroenkephalogramm des menschenArch Psychiatr Nervenkrankh192987527570 BartolomeiFChauvelPWendlingFEpileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral eegBrain200813171818183018556663 FengLMotelowJEMaCBicheWMcCaffertyCSmithNLiuMZhanQJiaRXiaoBDuqueABlumenfeldHSeizures and sleep in the thalamus: Focal limbic seizuresshow divergent activity patterns in different thalamic nucleiJ Neurosci2017374711441114541:CAS:528:DC%2BC1cXhtlCjsb%2FO290665565700426 Aggarval G, Ghandi TK (2017) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–4 BoniniFLambertIWendlingFWMcGonigalABartolomeiFAltered synchrony and loss of consciousness during frontal lobe seizuresLancet Neurol201612211701175 RedinbaughMJPhillipsJMKambiNAMohantaSAndrykSDooleyGLAfrasiabiMRazASaalmannYBThalamus modulates consciousness via layer-specific control of cortexNeuron20201061667532053769 BlumenfeldHImpaired consciousness in epilepsyLancet Neurol2012119814826228987353732214 EnglotDJYangLYHamidHDanielsonNBaiXMarfeoAYuLYGordonAPurcaroMJMotelowJEAgarwalREllensDJGolombJDShamyMCFZhangHCarlsonCCDoyleWDevinskyOVivesKSpencerDDSpencerSSSchevonCZaveriHPBlumenfeldHImpaired consciousness in temporal lobe seizures:role of cortical slow activityBrain20101331237643777210815512995886 EvangelistaEBènarCBoniniFCarronRColombetBRègisJBartolomeiFDoes the thalamo-cortical synchrony play a role in seizure termination?Front Neurol20156192263888344555023 KlimeschWSausengPHanslmayrSEeg alpha oscillations: the inhibition-timing hypothesisBrain Res Rev2007537638816887192 Ulate-CamposACouhlinFGaínza-LeinMSánchez FernándezIPearlPLLoddenkemperTAutomated seizure detection systems and their effectiveness for each type of seizureSeizure201640881011:STN:280:DC%2BC2s7mslSkug%3D%3D27376911 Hugle M, Heller S, Watter M, Blum M, Manzouri F, Dumpelmann M, Schulze-Bonhage A, Woias P, Boedecker J (2018) Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller. arXiv:1806.04549 SchiffNDNauvelTNVictorJDLarge-scale brain dynamics in disorders of consciousnessCurr Opin Neurobiol2014257141:CAS:528:DC%2BC2cXlvVSktbs%3D24709594 Boubchir L, Boubaker D, Pangracious V (2017) A review of feature extraction for eeg epileptic seizure detection and classification. In: IEEE 40th international conference on telecommunications and signal processing. IEEE, pp 456–460 Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: Gazzaniga M (ed) The cognitive neurosciences, chapter 23. MIT Press, Cambridge, pp 327–338 LiuYWangJWang CaiLChenYQinYEpileptic seizure detection from eeg signals with phase-amplitude cross-frequency coupling and support vector machineInt J Mod Phys20173281850086 Boubchir L, Al-Maadeed S, Bouridane A (2014) Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of eeg data. In: 26th international conference on microelectronics. IEEE, pp 32–35 AlotaibyTNAlshebeiliSAAlshawiTAhmadIAbd El-SamieFEEeg seizure detection and prediction algorithms: a surveyEURASIP J Adv Signal Process2014183121 KlimeschWDoppelmayrMPachingerTRusseggerHEvent-related desynchronization in the alpha band and the processing of semantic informationCogn Brain Res19976283941:STN:280:DyaK1c7htFSlsQ%3D%3D SchevonCACappellJEmersonRGIslerJRGrievePGGoodmanRRMcKhannGMWienerHDoyleWKKuznieckyRDevinskyOGillianFGCortical abnormalities in epilepsy revealed by local eeg synchronyNeuroimage20073511401481:STN:280:DC%2BD2s7gslGksg%3D%3D172242811994936 K Edakawa (840_CR22) 2016; 6 I Samengo (840_CR42) 2013; 34 C Koch (840_CR34) 2016; 17 R de Ruyter van Steveninck (840_CR19) 1988; 234 DJ Englot (840_CR23) 2010; 133 N Cámpora (840_CR14) 2019; 9 LJ Cauller (840_CR15) 1988; 72 Y Liu (840_CR37) 2017; 32 840_CR47 W Klimesch (840_CR31) 1997; 6 S Courtens (840_CR16) 2016; 6 Y Liu (840_CR35) 2012; 20 W Klimesch (840_CR32) 1999; 7 Y-C Liu (840_CR36) 2013; 13 L Feng (840_CR25) 2017; 37 F Crick (840_CR17) 1989; 2 J Bancaud (840_CR4) 1965 840_CR10 840_CR11 R Harner (840_CR27) 2009; 40 F Bonini (840_CR8) 2016; 12 H Blumenfeld (840_CR7) 2012; 11 CP Warren (840_CR51) 2010; 104 HL Bryant (840_CR12) 1976; 260 VR Romei (840_CR41) 2007; 30 G Wang (840_CR50) 2017; 20 C Donos (840_CR21) 2015; 25 AD Norden (840_CR38) 2002; 3 840_CR20 CA Schevon (840_CR45) 2007; 35 NB Danielson (840_CR18) 2011; 24 CM Gray (840_CR26) 1989; 338 N Cámpora (840_CR13) 2016; 55 AT Tzallas (840_CR48) 2012 L Orosco (840_CR39) 2013; 33 MJ Redinbaugh (840_CR40) 2020; 106 TN Alotaiby (840_CR2) 2014; 183 M Arthuis (840_CR3) 2009; 132 SB Wilson (840_CR52) 2002; 113 F Bartolomei (840_CR5) 2008; 131 E Evangelista (840_CR24) 2015; 6 840_CR28 840_CR29 P Sauseng (840_CR43) 2005; 22 P Sauseng (840_CR44) 2011; 2 A Kharbouch (840_CR30) 2011; 22 W Klimesch (840_CR33) 2007; 53 H Berger (840_CR6) 1929; 87 840_CR9 A Ulate-Campos (840_CR49) 2016; 40 ND Schiff (840_CR46) 2014; 25 840_CR1 |
References_xml | – reference: FengLMotelowJEMaCBicheWMcCaffertyCSmithNLiuMZhanQJiaRXiaoBDuqueABlumenfeldHSeizures and sleep in the thalamus: Focal limbic seizuresshow divergent activity patterns in different thalamic nucleiJ Neurosci2017374711441114541:CAS:528:DC%2BC1cXhtlCjsb%2FO290665565700426 – reference: SamengoIGollischTSpike-triggered covariance revisited: geometric proof, symmetry properties and extension beyond gaussian stimuliJ Comput Neurosci201334113716122798148 – reference: BergerHüber das elektroenkephalogramm des menschenArch Psychiatr Nervenkrankh192987527570 – reference: CámporaNKochenSSubjective and objective characteristics of altered consciousness during epileptic seizuresEpilepsy Behav20165512813226773683 – reference: Aggarval G, Ghandi TK (2017) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–4 – reference: KharbouchAShoebAGuttagJCashSSAn algorithm for seizure onset detection using intracranial eegEpilepsy Behav2011221S29S35220785153713785 – reference: BlumenfeldHImpaired consciousness in epilepsyLancet Neurol2012119814826228987353732214 – reference: BoniniFLambertIWendlingFWMcGonigalABartolomeiFAltered synchrony and loss of consciousness during frontal lobe seizuresLancet Neurol201612211701175 – reference: BartolomeiFChauvelPWendlingFEpileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral eegBrain200813171818183018556663 – reference: AlotaibyTNAlshebeiliSAAlshawiTAhmadIAbd El-SamieFEEeg seizure detection and prediction algorithms: a surveyEURASIP J Adv Signal Process2014183121 – reference: KochCMassiminiMBolyMBTononiGNeural correlates of consciousness: progress and problemsNat Rev Neurosci2016173073211:CAS:528:DC%2BC28XmsVartLY%3D27094080 – reference: WangGSunZTaoRLiKBaoGYanXEpileptic seizure detection based on partial directed coherence analysisIEEE J Biomed Health Inform2017203873879 – reference: EdakawaKYanagisawaTKishimaHFukumaROshinoSKooHMKobayashiMTanakeMYoshimineTDetection of epileptic seizures using phase-amplitude coupling in intracranial electroencephalographySci Rep20166254221:CAS:528:DC%2BC28XnsVeltrg%3D271471194857088 – reference: Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv 1–60 – reference: Simoncelli EP, Paninski L, Pillow J, Schwartz O (2004) Characterization of neural responses with stochastic stimuli. In: Gazzaniga M (ed) The cognitive neurosciences, chapter 23. MIT Press, Cambridge, pp 327–338 – reference: WarrenCPHuSSteadMBrinkmannBHBowerMRBWorrellGASynchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnectedJ Neurophysiol2010104635303539209266103007634 – reference: WilsonSBEmersonRSpike detection: a review and comparison of algorithmsClin Neurophysiol2002113121873188112464324 – reference: EnglotDJYangLYHamidHDanielsonNBaiXMarfeoAYuLYGordonAPurcaroMJMotelowJEAgarwalREllensDJGolombJDShamyMCFZhangHCarlsonCCDoyleWDevinskyOVivesKSpencerDDSpencerSSSchevonCZaveriHPBlumenfeldHImpaired consciousness in temporal lobe seizures:role of cortical slow activityBrain20101331237643777210815512995886 – reference: RomeiVRGrossJThutGOn the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation?J Neurosci2007302586928697 – reference: SchiffNDNauvelTNVictorJDLarge-scale brain dynamics in disorders of consciousnessCurr Opin Neurobiol2014257141:CAS:528:DC%2BC2cXlvVSktbs%3D24709594 – reference: CaullerLJKulicsATComparison of awake and sleeping cortical states by analysis of the somatosensory-evoked response of postcentral area 1 in rhesus monkeyExp Brain Res19887235845921:STN:280:DyaL1M7ntFSntw%3D%3D3234504 – reference: Heller S MH, Nematollahi I, Manzouri F, Dümpelmann M, Schulze-Bonhage, A, Boedecker JPW (2018). Hardware implementation of a performance and energy-optimized convolutional neural network for seizure detection. In: 40th annual international conference of the ieee engineering in medicine and biology society, pp 2268–2271 – reference: CámporaNMininniCJKochenSLewSESeizure localization using pre ictal phase-amplitude coupling in intracranial electroencephalographyScientific Reports20199120022318829566934586 – reference: CrickFKochCTowards a neurobiological theory of consciousnessSemin Neurosci19892263275 – reference: Hugle M, Heller S, Watter M, Blum M, Manzouri F, Dumpelmann M, Schulze-Bonhage A, Woias P, Boedecker J (2018) Early seizure detection with an energy-efficient convolutional neural network on an implantable microcontroller. arXiv:1806.04549 – reference: de Ruyter van SteveninckRBialekWReal-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transmission in short spike sequencesProc R Soc Lond Ser B Biol Sci19882341277379414 – reference: LiuYWangJWang CaiLChenYQinYEpileptic seizure detection from eeg signals with phase-amplitude cross-frequency coupling and support vector machineInt J Mod Phys20173281850086 – reference: SchevonCACappellJEmersonRGIslerJRGrievePGGoodmanRRMcKhannGMWienerHDoyleWKKuznieckyRDevinskyOGillianFGCortical abnormalities in epilepsy revealed by local eeg synchronyNeuroimage20073511401481:STN:280:DC%2BD2s7gslGksg%3D%3D172242811994936 – reference: SausengPFeldheimJFFreunbergerRHummelFCRight prefrontal tms disrupts interregional anticipatory eeg alpha activity during shifting of visuospatial attentionFront Psychol20112241220071793186913 – reference: GrayCMKönigPEngelAKSingerWOscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus propertiesNature198933862133341:STN:280:DyaL1M7lvFChuw%3D%3D2922061 – reference: LiuY-CLinC-CKLinJ-JTSunY-NModel-based spike detection of epileptic eeg dataSensors2013139125361254724048343 – reference: SausengPKlimeschWStadlerWSchabusMDoppelmayrMHanslmayrSGruberWRBirbaumerNA shift of visual spatial attention is selectively associated with human eeg alpha activityEur J Neurosci20052211291729261:STN:280:DC%2BD2MnksVKjuw%3D%3D16324126 – reference: EvangelistaEBènarCBoniniFCarronRColombetBRègisJBartolomeiFDoes the thalamo-cortical synchrony play a role in seizure termination?Front Neurol20156192263888344555023 – reference: Boubchir L, Al-Maadeed S, Bouridane A (2014) Haralick feature extraction from time-frequency images for epileptic seizure detection and classification of eeg data. In: 26th international conference on microelectronics. IEEE, pp 32–35 – reference: KlimeschWSausengPHanslmayrSEeg alpha oscillations: the inhibition-timing hypothesisBrain Res Rev2007537638816887192 – reference: BryantHLSegundoJPSpike initiation by trans-membrane current: a white-noise analysisJ Physiol197626022793141:STN:280:DyaE2s%2FjtFehtg%3D%3D9785191309092 – reference: OroscoLGarcés CorreaALaciarEReview: a survey of performance and techniques for automatic epilepsy detectionJ Med Biol Eng2013336526537 – reference: LiuYZhouWYuanQChenSAutomatic seizure detection using wavelet transform and svm in long-term intracranial eegIEEE Trans Neural Syst Rehabil Eng201220674975522868635 – reference: ArthuisMValtonLRègisJChauvelPWendlingFNaccacheLBernardCBartolomeiFImpaired consciousness during temporal lobe seizures is related to increased long-distance cortical–subcortical synchronizationBrain200913282091210119416952 – reference: TzallasATTsipourasMGTsalikakisDGKarvounisECAstrakasLKonitsiotisSTzaphlidouMStevanovicDAutomated epileptic seizure detection methods: A review studyEpilepsy-histological, electroencephalographic and psychological aspects, chapter 42012RijekaIntechOpen7598 – reference: Boubchir L, Boubaker D, Pangracious V (2017) A review of feature extraction for eeg epileptic seizure detection and classification. In: IEEE 40th international conference on telecommunications and signal processing. IEEE, pp 456–460 – reference: CourtensSColombetBCTrèbuchonATBènarCGraph measures of node strength for characterizing preictal synchrony in partial epilepsyBrain Connect20166753053927140287 – reference: HarnerRAutomatic eeg spike detectionClin EEG Neurosci200940426227019780347 – reference: DanielsonNBGuoJNBlumenfeldHThe default mode network and altered consciousness in epilepsyBehav Neurol20112415565214478993150226 – reference: KlimeschWDoppelmayrMPachingerTRusseggerHEvent-related desynchronization in the alpha band and the processing of semantic informationCogn Brain Res19976283941:STN:280:DyaK1c7htFSlsQ%3D%3D – reference: KlimeschWDoppelmayrMSchwaigerJAuingerPWinklerTParadoxical’ alpha synchronization in a memory taskEpilepsy Behav1999744935011:STN:280:DyaK1M7pt1Wqsg%3D%3D – reference: NordenADBlumenfeldHThe role of subcortical structures in human epilepsyEpilepsy Behav20023321923112662601 – reference: Boubchir L, Al-Maadeed S, Bouridane A, Chèrif AA (2015) Time-frequency image descriptors-based features for eeg epileptic seizure activities detection and classification. In IEEE 40th international conference on acoustics, speech and signal processing. IEEE, pp 867–871 – reference: DonosCDümpelmannMSchulze-BonhageAEarly seizure detection algorithm based on intracranial eeg and random forest classificationInt J Neural Syst2015255155002326022388 – reference: Ulate-CamposACouhlinFGaínza-LeinMSánchez FernándezIPearlPLLoddenkemperTAutomated seizure detection systems and their effectiveness for each type of seizureSeizure201640881011:STN:280:DC%2BC2s7mslSkug%3D%3D27376911 – reference: RedinbaughMJPhillipsJMKambiNAMohantaSAndrykSDooleyGLAfrasiabiMRazASaalmannYBThalamus modulates consciousness via layer-specific control of cortexNeuron20201061667532053769 – reference: BancaudJTalairachJBonisASchaubCSziklaGBorelPBordas FerrerMLa stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique1965ParisMasson – ident: 840_CR9 doi: 10.1109/ICM.2014.7071799 – ident: 840_CR10 doi: 10.1109/ICASSP.2015.7178093 – ident: 840_CR28 doi: 10.1109/EMBC.2018.8512735 – volume: 3 start-page: 219 issue: 3 year: 2002 ident: 840_CR38 publication-title: Epilepsy Behav doi: 10.1016/S1525-5050(02)00029-X – volume: 33 start-page: 526 issue: 6 year: 2013 ident: 840_CR39 publication-title: J Med Biol Eng doi: 10.5405/jmbe.1463 – volume: 22 start-page: 2917 issue: 11 year: 2005 ident: 840_CR43 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04482.x – volume: 12 start-page: 1170 issue: 2 year: 2016 ident: 840_CR8 publication-title: Lancet Neurol – volume: 2 start-page: 241 year: 2011 ident: 840_CR44 publication-title: Front Psychol doi: 10.3389/fpsyg.2011.00241 – volume: 2 start-page: 263 year: 1989 ident: 840_CR17 publication-title: Semin Neurosci – volume: 6 start-page: 83 issue: 2 year: 1997 ident: 840_CR31 publication-title: Cogn Brain Res doi: 10.1016/S0926-6410(97)00018-9 – volume: 32 start-page: 1850086 issue: 8 year: 2017 ident: 840_CR37 publication-title: Int J Mod Phys doi: 10.1142/S0217979218500868 – volume: 6 start-page: 25422 year: 2016 ident: 840_CR22 publication-title: Sci Rep doi: 10.1038/srep25422 – volume: 131 start-page: 1818 issue: 7 year: 2008 ident: 840_CR5 publication-title: Brain doi: 10.1093/brain/awn111 – volume: 34 start-page: 137 issue: 1 year: 2013 ident: 840_CR42 publication-title: J Comput Neurosci doi: 10.1007/s10827-012-0411-y – volume: 113 start-page: 1873 issue: 12 year: 2002 ident: 840_CR52 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00297-3 – volume: 30 start-page: 8692 issue: 25 year: 2007 ident: 840_CR41 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0160-10.2010 – ident: 840_CR1 doi: 10.1101/212563 – volume: 37 start-page: 11441 issue: 47 year: 2017 ident: 840_CR25 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1011-17.2017 – volume: 104 start-page: 3530 issue: 6 year: 2010 ident: 840_CR51 publication-title: J Neurophysiol doi: 10.1152/jn.00368.2010 – volume: 234 start-page: 379 issue: 1277 year: 1988 ident: 840_CR19 publication-title: Proc R Soc Lond Ser B Biol Sci doi: 10.1098/rspb.1988.0055 – volume: 11 start-page: 814 issue: 9 year: 2012 ident: 840_CR7 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70188-6 – ident: 840_CR20 – volume: 55 start-page: 128 year: 2016 ident: 840_CR13 publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2015.12.003 – volume: 260 start-page: 279 issue: 2 year: 1976 ident: 840_CR12 publication-title: J Physiol doi: 10.1113/jphysiol.1976.sp011516 – volume: 22 start-page: S29 issue: 1 year: 2011 ident: 840_CR30 publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2011.08.031 – volume: 6 start-page: 192 year: 2015 ident: 840_CR24 publication-title: Front Neurol doi: 10.3389/fneur.2015.00192 – ident: 840_CR29 doi: 10.1109/IJCNN.2018.8489493 – volume: 9 start-page: 20022 issue: 1 year: 2019 ident: 840_CR14 publication-title: Scientific Reports doi: 10.1038/s41598-019-56548-y – volume: 133 start-page: 3764 issue: 12 year: 2010 ident: 840_CR23 publication-title: Brain doi: 10.1093/brain/awq316 – volume-title: La stérpeo-électro-encéphalographie dans l’ épilepsie: informations neurophysiopathologiques apportées par l’investigation fonctionnelle stereotaxique year: 1965 ident: 840_CR4 – volume: 183 start-page: 1 year: 2014 ident: 840_CR2 publication-title: EURASIP J Adv Signal Process – volume: 35 start-page: 140 issue: 1 year: 2007 ident: 840_CR45 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.009 – volume: 338 start-page: 334 issue: 6213 year: 1989 ident: 840_CR26 publication-title: Nature doi: 10.1038/338334a0 – volume: 53 start-page: 63 issue: 7 year: 2007 ident: 840_CR33 publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.06.003 – volume: 20 start-page: 749 issue: 6 year: 2012 ident: 840_CR35 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2206054 – volume: 7 start-page: 493 issue: 4 year: 1999 ident: 840_CR32 publication-title: Epilepsy Behav – volume: 25 start-page: 7 year: 2014 ident: 840_CR46 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2013.10.007 – ident: 840_CR11 doi: 10.1109/TSP.2017.8076027 – start-page: 75 volume-title: Epilepsy-histological, electroencephalographic and psychological aspects, chapter 4 year: 2012 ident: 840_CR48 – volume: 40 start-page: 88 year: 2016 ident: 840_CR49 publication-title: Seizure doi: 10.1016/j.seizure.2016.06.008 – volume: 72 start-page: 584 issue: 3 year: 1988 ident: 840_CR15 publication-title: Exp Brain Res doi: 10.1007/BF00250603 – volume: 106 start-page: 66 issue: 1 year: 2020 ident: 840_CR40 publication-title: Neuron doi: 10.1016/j.neuron.2020.01.005 – volume: 20 start-page: 873 issue: 3 year: 2017 ident: 840_CR50 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2015.2424074 – volume: 87 start-page: 570 issue: 527 year: 1929 ident: 840_CR6 publication-title: Arch Psychiatr Nervenkrankh – volume: 6 start-page: 530 issue: 7 year: 2016 ident: 840_CR16 publication-title: Brain Connect doi: 10.1089/brain.2015.0397 – volume: 24 start-page: 55 issue: 1 year: 2011 ident: 840_CR18 publication-title: Behav Neurol doi: 10.1155/2011/912720 – volume: 17 start-page: 307 year: 2016 ident: 840_CR34 publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2016.22 – volume: 13 start-page: 12536 issue: 9 year: 2013 ident: 840_CR36 publication-title: Sensors doi: 10.3390/s130912536 – volume: 132 start-page: 2091 issue: 8 year: 2009 ident: 840_CR3 publication-title: Brain doi: 10.1093/brain/awp086 – ident: 840_CR47 – volume: 40 start-page: 262 issue: 4 year: 2009 ident: 840_CR27 publication-title: Clin EEG Neurosci doi: 10.1177/155005940904000408 – volume: 25 start-page: 1550023 issue: 5 year: 2015 ident: 840_CR21 publication-title: Int J Neural Syst doi: 10.1142/S0129065715500239 |
SSID | ssj0009259 |
Score | 2.2927775 |
Snippet | The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 461 |
SubjectTerms | Algorithms Analysis of covariance Bioinformatics Biomedical and Life Sciences Biomedicine Complex Systems Computer Appl. in Life Sciences Consciousness Convulsions & seizures Covariance EEG Electroencephalography Epilepsy Frequencies Frequency analysis Neurobiology Neurosciences Original Article Patients Principal components analysis Seizures Variance |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61y6WXAi2ly6Nypd5ao7wcO8cVWliBxImV6CnK2I6EQAlis0jLqT-dsfNAvCpxzthxnBn7G8_MZ4BfsZGYotTcSrTkoFjLCxOlXBUyTrRCR5Hisi3O0tk8ObkQF11R2KLPdu9Dkn6lHordPF0Vd-6OI4EP-OojrIlQZWoEa5Pjv6fTR7LdyF-SFsQubklq0BXLvN7L0w3pBcp8ESH1G8_ROsz7Ibf5JlcHywYP9P0zNsf3ftMGfO6QKJu0qrMJH2z1Bdb7Wx5YZ_Rf4Z-rEuGsqAwrb9vE6xUnJ72-vrOG6fqOvG2nOiTR8pswwsHM2MYneVW-oR5ooduqT1aXbGEv75fUD3MVLuzSHTJr2jgJuLLp9Ji1p0fuHH8L5kfT88MZ7-5t4DqWouFCoEOdBWqMMCwwQVESkFQorQpFaaUsdVGiESpIyOEKE4OoEtomU2oTSoy_waiqK_sdmKG1mpTJOVVZkpk0M5lKdYBRIUtB8GIMYf_zct2Rmru7Na7zgY7ZT3FOU5z7Kc5XY_g9tLlpKT3-K73X60Temfcip3UudBHmlAbwc3hMhumiLTRT9ZJkCKgSWCT3eQzbrS4NryPMTDBaBWP40-vFY-dvj2XnfeK78ClyquVTD_dg1Nwu7T5BqAZ_dBbzAJylEqA priority: 102 providerName: Springer Nature |
Title | Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings |
URI | https://link.springer.com/article/10.1007/s00422-020-00840-y https://www.ncbi.nlm.nih.gov/pubmed/32656680 https://www.proquest.com/docview/2571045864 https://www.proquest.com/docview/2423515094 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6a5NJLmz7jPBYVemtF_Zb2VLbBuyGBUEoXtidjPQyBYKfZ3cDmlJ-eGVn2UkJzMtiSLTwjzTdvgM-JESpXQnMrlEUFxVpemTjnshJJqqWiEikUbXGZn83T80W28Aa3pQ-r7M9Ed1CbVpON_BuyVkROvTz9fvOXU9co8q76Fho7sBehpCE-l9PZtuhu7JqlhQn5L5EdfNKMS51zxa84KU9UUj7km38F0xO0-cRT6gTQdB9eeeTIJh2p38AL27yF131XBuY36Tt4oKwOzqrGsPq2C5TecFSq2-s7a5hu71A7JlLjiK4eCUPcyoxduaCsxk3UQxnnLkuTtTVb2qv7Nb6HUUYKuyKjsEZBh0CTFcWMddYesru_h_m0-H16xn2fBa4Tka14lilCiZXSKlZRpVKV1Qj8pBJWRllthah1VSuTyTBFBSlKjVIyRbGW45xIqOQD7DZtYw-AGTxbkfikBI3TscnHZixzHaq4EnWGcCCAqP_JpfZFyKkXxnU5lE92hCmRMKUjTLkJ4Msw56YrwfHs6OOedqXfjstyyzwBfBoe40Yi7wj-qXaNYxBYIrhDdTeAjx3Nh88hxkXYK8MAvvZMsH35_9dy-PxajuBlTAzoQgOPYXd1u7YnCHFWagQ7YiFGjptHsDeZ_bko8PqjuPz5C-_O48kjP0f9BQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvB-BAkaCE1jk4cTZA0I8tmxpWSHUSr2FjO1IlaqkdHeLlhO_iN_IjPNYoYreeo7tRJnP4288L4DnidWYoTbSaXRkoDgnSxtnMi91okyOXCKFoy1m2fRAfT5MDzfgT58Lw2GVvU70ito2hu_IXxO0InbqZertyQ_JXaPYu9q30GhhsetWP8lkm7_Z-UjyfRHH25P9D1PZdRWQJtHpQqYpMicq0WCMUYkK04poTo7a5VFaOa0rU1Zo0zxUZA5EyiLmipR4RnMijQmtewU2FWe0jmDz_WT29du6zG_s27OFCXtMCYBdmo5P1vPltiSba1zEPpSrf4_Cc_z2nG_WH3nbN-F6x1XFuxZct2DD1bfhRt8HQnRq4Q785jwSKcraiuq0Dc1eSTLjm-MzZ4VpzsgeZ3DRiLYCiiCmLKxb-DCw2k80Q-HoNi9UNJWYu6NfS1pHcA6MOOJraENHK1FbMZl8Eu39Et_034WDS5HBPRjVTe0egLCkzQlubHaN1dhmYzvOMxNiXOoqJQISQNT_5MJ0Zc-5-8ZxMRRs9oIpSDCFF0yxCuDlMOekLfpx4eitXnZFpwDmxRquATwbHtPWZX8M_almSWOIyhKdJAM7gPutzIfXEasmop2HAbzqQbBe_P_f8vDib3kKV6f7X_aKvZ3Z7iO4FjMYfWDiFowWp0v3mAjWAp90qBbw_bI30l8fAjcN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7wSAwXARUdRGwTPWmHeffsgRgju4IY4kGSvQ1T3T0JCZlBdheznvxd_Dqqeh4bQuTGebp7JlNfV3_V9QJ4HxmFKSotrUJLBoq1sjBhKrNCRbHOkEukcLTFSXp4Gn8fJ-MluOlyYTisstOJTlGbWvMd-R5BK2CnXhrvlW1YxM-D0efL35I7SLGntWun0UDk2M7_kPk22T86IFl_CMPR8NfXQ9l2GJA6UslUJgkyPypQY4hBgTEmJVGeDJXNgqS0SpW6KNEkmR-TaRDEBjGLSaGnNCdQGNG6y7CqImJVtJfUWC0K_oauUZsfse-UoNgm7Li0PVd4S7LhxuXsfTm_eyjeY7r3vLTu8BttwNOWtYovDcw2YclWz2C96wghWgXxHP5xRokURWVEedUEac8lGfT1xbU1QtfXZJkzzGhEUwtFEGcWxk5dQFjlJuq-hHSTISrqUkzs-d8ZrSM4G0ac84W0pkOWSK4YDr-J5qaJ7_xfwOmjSGALVqq6sq9AGNLrBDw2wAbxwKQDM8hS7WNYqDIhKuJB0P3kXLcF0LkPx0Xel252gslJMLkTTD734GM_57Ip__Hg6J1OdnmrCib5ArgevOsf0yZmzwz9qXpGY4jUErEkU9uDl43M-9cRvybKnfkefOpAsFj8_9-y_fC3vIUntH3yH0cnx69hLWQsugjFHViZXs3sG2JaU9x1kBZw9th76BYnCznU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time-+and+frequency-resolved+covariance+analysis+for+detection+and+characterization+of+seizures+from+intracraneal+EEG+recordings&rft.jtitle=Biological+cybernetics&rft.au=Maidana+Capit%C3%A1n+Melisa&rft.au=C%C3%A1mpora+Nuria&rft.au=Sigvard%2C+Claudio+Sebasti%C3%A1n&rft.au=Kochen%2C+Silvia&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0340-1200&rft.eissn=1432-0770&rft.volume=114&rft.issue=4-5&rft.spage=461&rft.epage=471&rft_id=info:doi/10.1007%2Fs00422-020-00840-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon |