Effects of nano-patterned versus simple flat active layers in upright organic photovoltaic devices
A scalable procedure for nano-patterning the bulk heterojunction layer in organic photovoltaic (OPV) devices is reported. Nano-patterning is shown to increase light absorption in poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester (P3HT : PCBM) devices (ITO\WO3\P3HT : PCBM\Ca\Al). Na...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 46; no. 2; pp. 24008 - 1-9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
16.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A scalable procedure for nano-patterning the bulk heterojunction layer in organic photovoltaic (OPV) devices is reported. Nano-patterning is shown to increase light absorption in poly(3-hexylthiophene) : [6,6]-phenyl-C61-butyric acid methyl ester (P3HT : PCBM) devices (ITO\WO3\P3HT : PCBM\Ca\Al). Nano-patterning also modifies electric fields in OPV devices, thus affecting charge harvesting. Nano-patterned OPV devices with a power conversion efficiency of 4% are presented. Comparable efficiencies are also obtained by optimization of thicknesses in a flat-layer device. Trade-offs between absorption enhancement and charge harvesting deterioration induced by nano-patterning are discussed as well as possible optimization strategies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/46/2/024008 |