Competitive Exclusion in a General Multi-species Chemostat Model with Stochastic Perturbations
Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique pos...
Saved in:
Published in | Bulletin of mathematical biology Vol. 83; no. 1; p. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0092-8240 1522-9602 1522-9602 |
DOI | 10.1007/s11538-020-00843-7 |
Cover
Loading…
Abstract | Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique positive solution are first obtained. By defining a stochastic break-even concentration for every species, we prove that at most one competitor survives in the chemostat and the winner has the smallest stochastic break-even concentration, provided its response function satisfies a technical assumption. That is to say, the competitive exclusion principle holds for the stochastic competition chemostat model. Furthermore, we find that the noise experienced by one species is adverse to its growth while may be favorable for the growth of other one species. Namely, the destinies can be exchanged between two microorganism species in the chemostat due to the environmental noise. |
---|---|
AbstractList | Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique positive solution are first obtained. By defining a stochastic break-even concentration for every species, we prove that at most one competitor survives in the chemostat and the winner has the smallest stochastic break-even concentration, provided its response function satisfies a technical assumption. That is to say, the competitive exclusion principle holds for the stochastic competition chemostat model. Furthermore, we find that the noise experienced by one species is adverse to its growth while may be favorable for the growth of other one species. Namely, the destinies can be exchanged between two microorganism species in the chemostat due to the environmental noise. Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique positive solution are first obtained. By defining a stochastic break-even concentration for every species, we prove that at most one competitor survives in the chemostat and the winner has the smallest stochastic break-even concentration, provided its response function satisfies a technical assumption. That is to say, the competitive exclusion principle holds for the stochastic competition chemostat model. Furthermore, we find that the noise experienced by one species is adverse to its growth while may be favorable for the growth of other one species. Namely, the destinies can be exchanged between two microorganism species in the chemostat due to the environmental noise.Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic competition chemostat model with general monotonic response functions and differential removal rates. The existence and boundedness of the unique positive solution are first obtained. By defining a stochastic break-even concentration for every species, we prove that at most one competitor survives in the chemostat and the winner has the smallest stochastic break-even concentration, provided its response function satisfies a technical assumption. That is to say, the competitive exclusion principle holds for the stochastic competition chemostat model. Furthermore, we find that the noise experienced by one species is adverse to its growth while may be favorable for the growth of other one species. Namely, the destinies can be exchanged between two microorganism species in the chemostat due to the environmental noise. |
ArticleNumber | 4 |
Author | Yuan, Sanling Zhang, Tonghua Xu, Chaoqun |
Author_xml | – sequence: 1 givenname: Chaoqun surname: Xu fullname: Xu, Chaoqun organization: College of Science, University of Shanghai for Science and Technology, School of Mathematical Science, Jiangsu University – sequence: 2 givenname: Sanling orcidid: 0000-0002-0502-3653 surname: Yuan fullname: Yuan, Sanling email: sanling@usst.edu.cn organization: College of Science, University of Shanghai for Science and Technology – sequence: 3 givenname: Tonghua surname: Zhang fullname: Zhang, Tonghua organization: Department of Mathematics, Swinburne University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33387074$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PHDEQhq2IKBwkf4ACWaJJ48Rfu7ZLdCKABEqkQBvL65vljHbXh-0lyb-PjyOJREEz0zzPzGjeA7Q3xQkQOmL0E6NUfc6MNUITyimhVEtB1Bu0YA3nxLSU76EFpYYTzSXdRwc539MqGWHeoX0hhFZUyQX6sYzjBkoo4RHw2S8_zDnECYcJO3wOEyQ34Ot5KIHkDfgAGS_XMMZcXMHXcQUD_hnKGn8v0a9dLsHjb5DKnDpX6pz8Hr3t3ZDhw3M_RLdfzm6WF-Tq6_nl8vSKeKGaQiRoznTvGDNStY0xuucdrARd9a3kXUN5x5Q0IMF4ED2XDgyVLWuqDtxwcYg-7uZuUnyYIRc7huxhGNwEcc6WSyW1rEVV9OQFeh_nNNXrtpTirdSCVer4mZq7EVZ2k8Lo0m_793MV4DvAp5hzgv4fwqjdxmN38dgaj32Kx2536xeSD-XpUyW5MLyuip2a657pDtL_s1-x_gAY7aK0 |
CitedBy_id | crossref_primary_10_1007_s12190_021_01639_1 crossref_primary_10_1063_5_0244566 crossref_primary_10_1016_j_ecolmodel_2022_109909 crossref_primary_10_1111_sapm_12489 crossref_primary_10_1016_j_chaos_2021_111312 crossref_primary_10_1016_j_cnsns_2023_107436 crossref_primary_10_1002_mma_9591 crossref_primary_10_3934_dcdsb_2025009 crossref_primary_10_1007_s11424_023_1042_2 crossref_primary_10_3934_mbe_2022159 crossref_primary_10_1016_j_jfranklin_2021_01_015 crossref_primary_10_1016_j_jtbi_2022_111262 crossref_primary_10_1016_j_aml_2021_107384 crossref_primary_10_3934_math_20241429 crossref_primary_10_1016_j_matcom_2024_05_014 crossref_primary_10_1007_s11424_023_1199_8 crossref_primary_10_1007_s11071_022_07422_6 crossref_primary_10_3934_math_2023090 crossref_primary_10_1063_5_0147354 crossref_primary_10_1007_s12346_025_01237_7 crossref_primary_10_1016_j_chaos_2022_112773 crossref_primary_10_1016_j_chaos_2023_114235 crossref_primary_10_1007_s11071_022_07933_2 crossref_primary_10_1016_j_chaos_2022_112110 crossref_primary_10_3390_math10081229 crossref_primary_10_1016_j_jtbi_2024_111739 crossref_primary_10_1016_j_cnsns_2022_106910 crossref_primary_10_1186_s13662_025_03900_4 crossref_primary_10_1016_j_xcrp_2023_101359 crossref_primary_10_1155_2021_5550131 crossref_primary_10_1007_s40840_024_01771_8 crossref_primary_10_3389_fphy_2021_721115 crossref_primary_10_1016_j_mbs_2025_109402 crossref_primary_10_1016_j_ifacol_2022_05_012 crossref_primary_10_1016_j_aml_2022_108066 crossref_primary_10_1063_5_0151537 crossref_primary_10_1155_2021_4920018 crossref_primary_10_3934_mbe_2023197 crossref_primary_10_1002_mma_7638 |
Cites_doi | 10.1007/s002850050150 10.1007/s11538-015-0086-4 10.1137/S0036139995287314 10.1007/s10910-014-0321-5 10.1007/s10884-019-09741-6 10.1017/CBO9780511530043 10.1007/s10665-005-9004-3 10.1137/S0036144500378302 10.1137/S0036139995289842 10.1016/j.jmaa.2015.09.070 10.1137/130921386 10.1016/j.jmaa.2010.11.008 10.1016/j.jde.2019.11.004 10.1016/j.cnsns.2016.01.002 10.1088/1361-6544/ab86ca 10.1137/060649343 10.1007/s10910-015-0589-0 10.1137/S003613999222522X 10.1016/j.nahs.2018.03.007 10.1137/0152012 10.1126/science.197.4302.463 10.1016/j.ecolmodel.2011.04.027 10.1126/science.131.3409.1292 10.1137/0132030 10.1016/j.aml.2015.03.012 10.1016/j.jmaa.2005.08.014 10.1137/S003613999631100X 10.3934/dcdsb.2020014 10.1007/s11538-020-00733-y 10.1016/j.jde.2005.06.017 10.1137/0145006 10.1016/j.mbs.2016.07.008 |
ContentType | Journal Article |
Copyright | Society for Mathematical Biology 2021 Society for Mathematical Biology 2021. |
Copyright_xml | – notice: Society for Mathematical Biology 2021 – notice: Society for Mathematical Biology 2021. |
DBID | AAYXX CITATION NPM 7SS 7TK JQ2 K9. 7X8 |
DOI | 10.1007/s11538-020-00843-7 |
DatabaseName | CrossRef PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1522-9602 |
ExternalDocumentID | 33387074 10_1007_s11538_020_00843_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180856 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 11671260 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Young Scientists Fund grantid: 11801224 funderid: http://dx.doi.org/10.13039/501100010909 – fundername: Young Scientists Fund grantid: 11801224 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180856 – fundername: National Natural Science Foundation of China grantid: 11671260 |
GroupedDBID | --- --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06D 0R~ 0VY 199 1B1 1N0 1RT 1~5 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3O- 3V. 4.4 406 408 40D 40E 4G. 53G 5GY 5RE 5VS 67Z 6J9 6NX 7-5 71M 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AACTN AAEDT AAHNG AAIAL AAJBT AAJKR AALCJ AALRI AANZL AAQFI AAQXK AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMAC ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACRPL ACZOJ ADBBV ADFGL ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHHHB AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AITUG AJBLW AJRNO AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DM4 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FDB FEDTE FERAY FFXSO FGOYB FIGPU FINBP FIRID FNLPD FRRFC FSGXE FWDCC FYUFA G-2 GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG5 HG6 HLV HMCUK HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K6V K7- KDC KOV L6V LG5 LK8 LLZTM LW8 M0L M1P M4Y M7P M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O-L O9- O93 O9G O9I O9J OZT P19 P2P P62 P9R PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R2- R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAB SAP SCLPG SDD SDH SDM SEW SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSZ STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 WUQ XPP XSW YLTOR Z45 Z7U Z83 ZGI ZMT ZMTXR ZWQNP ZXP ~A9 ~EX ~KM AAPKM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIGII AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7SS 7TK JQ2 K9. 7X8 ACMFV |
ID | FETCH-LOGICAL-c375t-4e8218fa1194765998f2bed30df642b502b1749e4e9ce3f24ae904615c37e2923 |
IEDL.DBID | U2A |
ISSN | 0092-8240 1522-9602 |
IngestDate | Fri Jul 11 04:18:38 EDT 2025 Fri Jul 25 19:14:49 EDT 2025 Wed Feb 19 02:29:14 EST 2025 Wed Aug 13 03:17:36 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Noise-induced conversion of species’destinies General response function Stochastic chemostat model Stochastic break-even concentration Competitive exclusion principle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-4e8218fa1194765998f2bed30df642b502b1749e4e9ce3f24ae904615c37e2923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0502-3653 |
PMID | 33387074 |
PQID | 2477264831 |
PQPubID | 55445 |
ParticipantIDs | proquest_miscellaneous_2474844747 proquest_journals_2477264831 pubmed_primary_33387074 crossref_primary_10_1007_s11538_020_00843_7 crossref_citationtrail_10_1007_s11538_020_00843_7 springer_journals_10_1007_s11538_020_00843_7 |
PublicationCentury | 2000 |
PublicationDate | 20210100 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | A journal devoted to research at the interface of the life and mathematical sciences |
PublicationTitle | Bulletin of mathematical biology |
PublicationTitleAbbrev | Bull Math Biol |
PublicationTitleAlternate | Bull Math Biol |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Zhao, Yuan, Ma (CR33) 2015; 77 Hsu, Hubbell, Waltman (CR9) 1977; 32 Liu, Wang, Wang, Song (CR14) 2014; 74 Zhang, Jiang (CR30) 2016; 54 Beddington, May (CR1) 1977; 197 Li (CR13) 1998; 59 Campillo, Joannides, Larramendy-Valverde (CR3) 2011; 222 Wang, Jiang, O’Regan (CR18) 2016; 37 Wang, Ma, Feng (CR20) 2020; 33 Ellermeyer (CR5) 1994; 54 Butler, Wolkowicz (CR2) 1985; 45 Wang, Jiang, Wolkowicz (CR19) 2020; 32 Wolkowicz, Xia (CR22) 1997; 57 Zhu, Yin (CR35) 2007; 46 Kutoyants (CR12) 2003 Xu, Yuan (CR25) 2015; 48 Smith, Waltman (CR16) 1995 Zhao, Yuan, Wang (CR34) 2020; 268 Wolkowicz, Xia, Wu (CR24) 1999; 38 Xu, Yuan (CR26) 2016; 280 Wolkowicz, Lu (CR21) 1992; 52 Xu, Yuan, Zhang (CR27) 2018; 29 Yuan, Wu, Lan, Wang (CR29) 2020; 82 Higham (CR8) 2001; 43 Ji, Jiang, Shi (CR11) 2011; 377 Hardin (CR7) 1960; 131 Imhof, Walcher (CR10) 2005; 217 Wolkowicz, Xia, Ruan (CR23) 1997; 57 Yu, Yuan (CR28) 2020; 25 Mao (CR15) 2007 Grasman, Gee, Herwaarden (CR6) 2005; 53 Wang, Wolkowicz (CR17) 2006; 321 De Leenheer, Li, Smith (CR4) 2003; 11 Zhao, Yuan (CR32) 2016; 434 Zhang, Chen, Han (CR31) 2014; 52 C Ji (843_CR11) 2011; 377 DYA Kutoyants (843_CR12) 2003 C Zhu (843_CR35) 2007; 46 GSK Wolkowicz (843_CR22) 1997; 57 X Yu (843_CR28) 2020; 25 D Zhao (843_CR32) 2016; 434 L Wang (843_CR19) 2020; 32 G Hardin (843_CR7) 1960; 131 GJ Butler (843_CR2) 1985; 45 T Zhang (843_CR31) 2014; 52 J Grasman (843_CR6) 2005; 53 P De Leenheer (843_CR4) 2003; 11 L Wang (843_CR18) 2016; 37 W Wang (843_CR20) 2020; 33 Q Zhang (843_CR30) 2016; 54 SB Hsu (843_CR9) 1977; 32 HL Smith (843_CR16) 1995 JR Beddington (843_CR1) 1977; 197 DJ Higham (843_CR8) 2001; 43 L Imhof (843_CR10) 2005; 217 B Li (843_CR13) 1998; 59 F Campillo (843_CR3) 2011; 222 GSK Wolkowicz (843_CR21) 1992; 52 GSK Wolkowicz (843_CR24) 1999; 38 GSK Wolkowicz (843_CR23) 1997; 57 S Zhao (843_CR34) 2020; 268 SF Ellermeyer (843_CR5) 1994; 54 L Wang (843_CR17) 2006; 321 S Yuan (843_CR29) 2020; 82 X Mao (843_CR15) 2007 C Xu (843_CR26) 2016; 280 Y Zhao (843_CR33) 2015; 77 C Xu (843_CR25) 2015; 48 S Liu (843_CR14) 2014; 74 C Xu (843_CR27) 2018; 29 |
References_xml | – volume: 38 start-page: 285 year: 1999 end-page: 316 ident: CR24 article-title: Global dynamics of a chemostat competition model with distributed delay publication-title: J Math Biol doi: 10.1007/s002850050150 – volume: 77 start-page: 1285 year: 2015 end-page: 1326 ident: CR33 article-title: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment publication-title: Bull Math Biol doi: 10.1007/s11538-015-0086-4 – volume: 11 start-page: 229 year: 2003 end-page: 248 ident: CR4 article-title: Competition in the chemostat: some remarks publication-title: Can Appl Math Q – year: 2007 ident: CR15 publication-title: Stochastic differential equations and applications – volume: 57 start-page: 1019 year: 1997 end-page: 1043 ident: CR22 article-title: Global asymptotic behavior of a chemostat model with discrete delays publication-title: SIAM J Appl Math doi: 10.1137/S0036139995287314 – volume: 52 start-page: 1441 year: 2014 end-page: 1459 ident: CR31 article-title: Dynamical analysis of a stochastic model for cascaded continuous flow bioreactors publication-title: J Math Chem doi: 10.1007/s10910-014-0321-5 – volume: 32 start-page: 849 year: 2020 end-page: 872 ident: CR19 article-title: Global asymptotic behavior of a multi-species stochastic chemostat model with discrete delays publication-title: J Dyn Differ Equ doi: 10.1007/s10884-019-09741-6 – year: 1995 ident: CR16 publication-title: The theory of the chemostat: dynamics of microbial competition doi: 10.1017/CBO9780511530043 – volume: 53 start-page: 291 year: 2005 end-page: 300 ident: CR6 article-title: Breakdown of a chemostat exposed to stochastic noise publication-title: J Eng Math doi: 10.1007/s10665-005-9004-3 – volume: 43 start-page: 525 year: 2001 end-page: 546 ident: CR8 article-title: An algorithmic introduction to numerical simulation of stochastic diferential equations publication-title: SIAM Rev doi: 10.1137/S0036144500378302 – volume: 57 start-page: 1281 year: 1997 end-page: 1310 ident: CR23 article-title: Competition in the chemostat: a distributed delay model and its global asymptotic behavior publication-title: SIAM J Appl Math doi: 10.1137/S0036139995289842 – volume: 434 start-page: 1336 year: 2016 end-page: 1345 ident: CR32 article-title: Critical result on the break-even concentration in a single-species stochastic chemostat model publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2015.09.070 – volume: 74 start-page: 634 year: 2014 end-page: 648 ident: CR14 article-title: Competitive exclusion in delayed chemostat models with differential removal rates publication-title: SIAM J Appl Math doi: 10.1137/130921386 – volume: 377 start-page: 435 year: 2011 end-page: 440 ident: CR11 article-title: A note on a predator-prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2010.11.008 – volume: 268 start-page: 5113 year: 2020 end-page: 5139 ident: CR34 article-title: Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation publication-title: J Differ Equ doi: 10.1016/j.jde.2019.11.004 – volume: 37 start-page: 1 year: 2016 end-page: 13 ident: CR18 article-title: The periodic solutions of a stochastic chemostat model with periodic washout rate publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2016.01.002 – volume: 33 start-page: 4338 year: 2020 end-page: 4380 ident: CR20 article-title: Global dynamics and travelling waves for a periodic and diffusive chemostat model with two nutrients and one microorganism publication-title: Nonlinearity doi: 10.1088/1361-6544/ab86ca – volume: 46 start-page: 1155 year: 2007 end-page: 1179 ident: CR35 article-title: Asymptotic properties of hybrid diffusion systems publication-title: SIAM J Control Optim doi: 10.1137/060649343 – volume: 54 start-page: 777 year: 2016 end-page: 791 ident: CR30 article-title: Competitive exclusion in a stochastic chemostat model with Holling type II functional response publication-title: J Math Chem doi: 10.1007/s10910-015-0589-0 – volume: 54 start-page: 456 year: 1994 end-page: 465 ident: CR5 article-title: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth publication-title: SIAM J Appl Math doi: 10.1137/S003613999222522X – volume: 29 start-page: 373 year: 2018 end-page: 382 ident: CR27 article-title: Average break-even concentration in a simple chemostat model with telegraph noise publication-title: Nonlinear Anal-Hybrid doi: 10.1016/j.nahs.2018.03.007 – volume: 52 start-page: 222 year: 1992 end-page: 233 ident: CR21 article-title: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates publication-title: SIAM J Appl Math doi: 10.1137/0152012 – volume: 197 start-page: 463 year: 1977 end-page: 465 ident: CR1 article-title: Harvesting natural populations in a randomly fluctuating environment publication-title: Science doi: 10.1126/science.197.4302.463 – volume: 222 start-page: 2676 year: 2011 end-page: 2689 ident: CR3 article-title: Stochastic modeling of the chemostat publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2011.04.027 – volume: 131 start-page: 1292 year: 1960 end-page: 1297 ident: CR7 article-title: The competitive exclusion principle publication-title: Science doi: 10.1126/science.131.3409.1292 – year: 2003 ident: CR12 publication-title: Statistical inference for ergodic diffusion processes – volume: 32 start-page: 366 year: 1977 end-page: 383 ident: CR9 article-title: A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms publication-title: SIAM J Appl Math doi: 10.1137/0132030 – volume: 48 start-page: 62 year: 2015 end-page: 68 ident: CR25 article-title: An analogue of break-even concentration in an simple stochastic chemostat model publication-title: Appl Math Lett doi: 10.1016/j.aml.2015.03.012 – volume: 321 start-page: 452 year: 2006 end-page: 468 ident: CR17 article-title: A delayed chemostat model with general nonmonotone response functions and differential removal rates publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2005.08.014 – volume: 59 start-page: 411 year: 1998 end-page: 422 ident: CR13 article-title: Global asymptotic behaviour of the chemostat: general response functions and different removal rates publication-title: SIAM J Appl Math doi: 10.1137/S003613999631100X – volume: 25 start-page: 2373 year: 2020 end-page: 2390 ident: CR28 article-title: Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbations publication-title: Discrete Contin Dyn Syst B doi: 10.3934/dcdsb.2020014 – volume: 82 start-page: 55 year: 2020 ident: CR29 article-title: Noise-induced transitions in a nonsmooth producerCgrazer model with stoichiometric constraints publication-title: Bull Math Biol doi: 10.1007/s11538-020-00733-y – volume: 217 start-page: 26 year: 2005 end-page: 53 ident: CR10 article-title: Exclusion and persistence in deterministic and stochastic chemostat models publication-title: J Differ Equ doi: 10.1016/j.jde.2005.06.017 – volume: 45 start-page: 138 year: 1985 end-page: 151 ident: CR2 article-title: A mathematical model of the chemostat with a general class of functions describing nutrient uptake publication-title: SIAM J Appl Math doi: 10.1137/0145006 – volume: 280 start-page: 1 year: 2016 end-page: 9 ident: CR26 article-title: Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior publication-title: Math Biosci doi: 10.1016/j.mbs.2016.07.008 – volume: 280 start-page: 1 year: 2016 ident: 843_CR26 publication-title: Math Biosci doi: 10.1016/j.mbs.2016.07.008 – volume: 59 start-page: 411 year: 1998 ident: 843_CR13 publication-title: SIAM J Appl Math doi: 10.1137/S003613999631100X – volume: 57 start-page: 1019 year: 1997 ident: 843_CR22 publication-title: SIAM J Appl Math doi: 10.1137/S0036139995287314 – volume: 222 start-page: 2676 year: 2011 ident: 843_CR3 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2011.04.027 – volume: 32 start-page: 366 year: 1977 ident: 843_CR9 publication-title: SIAM J Appl Math doi: 10.1137/0132030 – volume-title: Statistical inference for ergodic diffusion processes year: 2003 ident: 843_CR12 – volume: 52 start-page: 1441 year: 2014 ident: 843_CR31 publication-title: J Math Chem doi: 10.1007/s10910-014-0321-5 – volume: 54 start-page: 456 year: 1994 ident: 843_CR5 publication-title: SIAM J Appl Math doi: 10.1137/S003613999222522X – volume: 434 start-page: 1336 year: 2016 ident: 843_CR32 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2015.09.070 – volume: 197 start-page: 463 year: 1977 ident: 843_CR1 publication-title: Science doi: 10.1126/science.197.4302.463 – volume: 45 start-page: 138 year: 1985 ident: 843_CR2 publication-title: SIAM J Appl Math doi: 10.1137/0145006 – volume: 321 start-page: 452 year: 2006 ident: 843_CR17 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2005.08.014 – volume: 77 start-page: 1285 year: 2015 ident: 843_CR33 publication-title: Bull Math Biol doi: 10.1007/s11538-015-0086-4 – volume: 57 start-page: 1281 year: 1997 ident: 843_CR23 publication-title: SIAM J Appl Math doi: 10.1137/S0036139995289842 – volume: 33 start-page: 4338 year: 2020 ident: 843_CR20 publication-title: Nonlinearity doi: 10.1088/1361-6544/ab86ca – volume: 48 start-page: 62 year: 2015 ident: 843_CR25 publication-title: Appl Math Lett doi: 10.1016/j.aml.2015.03.012 – volume: 377 start-page: 435 year: 2011 ident: 843_CR11 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2010.11.008 – volume: 268 start-page: 5113 year: 2020 ident: 843_CR34 publication-title: J Differ Equ doi: 10.1016/j.jde.2019.11.004 – volume: 53 start-page: 291 year: 2005 ident: 843_CR6 publication-title: J Eng Math doi: 10.1007/s10665-005-9004-3 – volume-title: The theory of the chemostat: dynamics of microbial competition year: 1995 ident: 843_CR16 doi: 10.1017/CBO9780511530043 – volume: 52 start-page: 222 year: 1992 ident: 843_CR21 publication-title: SIAM J Appl Math doi: 10.1137/0152012 – volume: 43 start-page: 525 year: 2001 ident: 843_CR8 publication-title: SIAM Rev doi: 10.1137/S0036144500378302 – volume: 25 start-page: 2373 year: 2020 ident: 843_CR28 publication-title: Discrete Contin Dyn Syst B doi: 10.3934/dcdsb.2020014 – volume: 54 start-page: 777 year: 2016 ident: 843_CR30 publication-title: J Math Chem doi: 10.1007/s10910-015-0589-0 – volume: 38 start-page: 285 year: 1999 ident: 843_CR24 publication-title: J Math Biol doi: 10.1007/s002850050150 – volume: 74 start-page: 634 year: 2014 ident: 843_CR14 publication-title: SIAM J Appl Math doi: 10.1137/130921386 – volume: 46 start-page: 1155 year: 2007 ident: 843_CR35 publication-title: SIAM J Control Optim doi: 10.1137/060649343 – volume: 11 start-page: 229 year: 2003 ident: 843_CR4 publication-title: Can Appl Math Q – volume-title: Stochastic differential equations and applications year: 2007 ident: 843_CR15 – volume: 217 start-page: 26 year: 2005 ident: 843_CR10 publication-title: J Differ Equ doi: 10.1016/j.jde.2005.06.017 – volume: 29 start-page: 373 year: 2018 ident: 843_CR27 publication-title: Nonlinear Anal-Hybrid doi: 10.1016/j.nahs.2018.03.007 – volume: 37 start-page: 1 year: 2016 ident: 843_CR18 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2016.01.002 – volume: 82 start-page: 55 year: 2020 ident: 843_CR29 publication-title: Bull Math Biol doi: 10.1007/s11538-020-00733-y – volume: 32 start-page: 849 year: 2020 ident: 843_CR19 publication-title: J Dyn Differ Equ doi: 10.1007/s10884-019-09741-6 – volume: 131 start-page: 1292 year: 1960 ident: 843_CR7 publication-title: Science doi: 10.1126/science.131.3409.1292 |
SSID | ssj0007939 |
Score | 2.4839842 |
Snippet | Based on the fact that the continuous culture of microorganisms in a chemostat is subject to environmental noises, we present and analyze a stochastic... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4 |
SubjectTerms | Background noise Cell Biology Competition Continuous culture Life Sciences Mathematical and Computational Biology Mathematics Mathematics and Statistics Microorganisms Original Article Response functions Species |
Title | Competitive Exclusion in a General Multi-species Chemostat Model with Stochastic Perturbations |
URI | https://link.springer.com/article/10.1007/s11538-020-00843-7 https://www.ncbi.nlm.nih.gov/pubmed/33387074 https://www.proquest.com/docview/2477264831 https://www.proquest.com/docview/2474844747 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90Q9AH0fk1nRLBNy2sTbquj2NMh2Mi6nC-WJIsRWF0sg_Q_9679GOIH-BL-9AkDXdJ7n5J7ncAZ67hseI6cGIv5g5afOmESiFU0XrEtau4tHRN_ZtGdyCuh_4wCwqb5bfd8yNJu1Ivg93s5CS4QyTw3AlWoewjdqdxPfBaxfqLIy51ekOc62iwslCZn9v4ao6--Zjfzket2bncgs3MX2StVMHbsGKSCqylGSQ_KrDRL2hXZzvw3LZesL0OxDrverygvTD2mjDJMn5pZiNuHQqwRIzMiC9gQkFFjJKijRlty7L7-US_SCJwZrdmijZJpdt6uzC47Dy0u06WQMHRPPDnjjBNtOCxdN1QBA0fkVXsKTPi9VGMsEP5dU8hIAmNMKFGnXlCmpAI2H2sbjx0_faglEwScwCMeMBM0zQCMZLCV3Vp0BEMRZOrWKq4HlTBzeUY6YxdnJJcjKMlLzLJPkLZR1b2EdY5L-q8pdwaf5au5eqJsnk2izyB6KCB3XCrcFp8xhlCxx4yMZOFLSOaAh_YxH6q1uJ3HBF6gF5UFS5yPS8b_70vh_8rfgTrHl2FsTs3NSjNpwtzjL7MXJ1AuXX11OvQu3f32DuxQ_kTjZvrNQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohqgP3i_TqRF80461Sdf1cYzpdE4EHeiLJclSFEcnWwfqr_ckvQyv4EtfmqRpkpPzfUnOF4AjW9FQUOlZoRNSCz0-t3whkKpI2afSFpQbuabuVa3dYxd37l0aFDbOTrtnW5Jmpp4Guxnj1HRHi8BTy5uFIkMO7hag2Di777TyGRjHXAJ7fbR2dFlpsMzPpXx2SN9Q5rcdUuN4Tpehl1U5OW_yXJnEoiLfv6g5_vefVmApRaKkkQydVZhR0RrMJXdTvq3BYjcXdB2vw0PT4Gtz0Ii0XuVgolfZyFNEOEmVq4mJ5bV06Cayb6KVCIY6XIno69YGRC_4kpt4KB-5loYm12qE3k4kC4Yb0Dtt3TbbVno1gyWp58YWU3XEBiG3sf29moucLXSE6tNqP0RCI9yqI5Dq-IopX-JocBhXvpZ2dzG7chBUbkIhGkZqG4hWGFN1VfNYnzNXVLlCiOmzOhUhF2HVK4Gd9U8gU91yfX3GIJgqLutWDLAVA9OKAeY5zvO8JKodf6YuZ90epBY8DhyGvKOG1bBLcJi_RtvTGyo8UsOJScPqDB9YxFYyXPLPUeT-HuKzEpxkXT8t_Pe67Pwv-QHMt2-7l8Hl-VVnFxYcfeDGrA-VoRCPJmoPEVMs9lMD-QA_sgfy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90ouiD-O38jOCblq1Nuq6Pog6_EXTgkyVJExRGJ64D_e-9S7tO8QN86UuTtNzlch-5-x3Avm-4VVxHng0s91DjSy9WCl0VrVOufcWlg2u6vmmddcXFQ_jwqYrfZbuPriSLmgZCacryxktqG-PCNyeo5PoQIDz3okmYwuPYp6SubnBUncW4-woDOEa5R-VVls38vMZX1fTN3vx2V-pUUGcB5kvbkR0VzF6ECZMtwXTRTfJ9CeauKwjWwTI8HjuL2KUGsdM33RtSXIw9Z0yyEmuauepbj4ot0V9mhB3QpwIjRg3SeoxCtOwu7-snSWDO7Na8on5SRYhvBbqd0_vjM69spuBpHoW5J0wbtbmVvh-LqBWil2UDZVLeTC26ICpsBgqdk9gIE2vkXyCkiQmMPcTpJkAzcBVqWT8z68AIE8y0TSsSqRShakqDRmEs2lxZqWwzqoM_omOiS6RxanjRS8YYyUT7BGmfONonOOegmvNS4Gz8OXprxJ6klLlBEgj0FFr4G34d9qrXKC10BSIz0x-6MaIt8IFLrBVsrT7H0VuP0KKqw-GIz-PFf_-Xjf8N34WZ25NOcnV-c7kJswFlyLiAzhbU8teh2UYTJ1c7bhd_AMY57y0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Exclusion+in+a+General+Multi-species+Chemostat+Model+with+Stochastic+Perturbations&rft.jtitle=Bulletin+of+mathematical+biology&rft.au=Xu%2C+Chaoqun&rft.au=Yuan%2C+Sanling&rft.au=Zhang%2C+Tonghua&rft.date=2021-01-01&rft.eissn=1522-9602&rft.volume=83&rft.issue=1&rft.spage=4&rft_id=info:doi/10.1007%2Fs11538-020-00843-7&rft_id=info%3Apmid%2F33387074&rft.externalDocID=33387074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8240&client=summon |