Length and colonization rates of roots associated with arbuscular or ectomycorrhizal fungi decline differentially with depth in two northern hardwood forests

Ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi are often studied independently, and thus little is known regarding differences in vertical distribution of these two groups in forests where they co-occur. We sampled roots at two soil depths in two northern hardwood stands in Bartlett, New...

Full description

Saved in:
Bibliographic Details
Published inMycorrhiza Vol. 32; no. 2; pp. 213 - 219
Main Authors Nash, Joseph M., Diggs, Franklin M., Yanai, Ruth D.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi are often studied independently, and thus little is known regarding differences in vertical distribution of these two groups in forests where they co-occur. We sampled roots at two soil depths in two northern hardwood stands in Bartlett, New Hampshire, co-dominated by tree species that associate with AM or EM fungi. Root length of both groups declined with depth. More importantly, root length of EM plant species exceeded that of AM plants at 0–10-cm depth, while AM exceeded EM root length at 30–50-cm depth. Colonization rates were similar between mineral and organic portions of the shallow (0–10 cm) samples for EM and AM fungi and declined dramatically with depth (30–50 cm). The ratio of EM to AM fungal colonization declined with depth, but not as much as the decline in root length with depth, resulting in greater dominance by EM fungi near the surface and by AM fungi at depth. The depth distribution of EM and AM roots may have implications for soil carbon accumulation as well as for the success of the associated tree species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0940-6360
1432-1890
DOI:10.1007/s00572-022-01071-8