Recent Development on Sensing Strategies for Small Molecules Detections

Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Smal...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluorescence Vol. 34; no. 4; pp. 1493 - 1525
Main Authors Saleem, Muhammad, Hanif, Muhammad, Rafiq, Muhammad, Ali, Anser, Raza, Hussain, Kim, Song Ja, Lu, Changrui
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV–visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1053-0509
1573-4994
1573-4994
DOI:10.1007/s10895-023-03387-w