High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer

Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enro...

Full description

Saved in:
Bibliographic Details
Published inAbdominal imaging Vol. 46; no. 3; pp. 873 - 884
Main Authors Yang, Yan-song, Feng, Feng, Qiu, Yong-juan, Zheng, Gui-hua, Ge, Ya-qiong, Wang, Yue-tao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. Results The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test, p  = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test, p  = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. Conclusion HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.
AbstractList To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.PURPOSETo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.METHODSA total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.RESULTSThe predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.CONCLUSIONHRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.
To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.
Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. Results The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test, p  = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test, p  = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. Conclusion HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.
PurposeTo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.MethodsA total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.ResultsThe predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.ConclusionHRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.
Author Yang, Yan-song
Wang, Yue-tao
Ge, Ya-qiong
Qiu, Yong-juan
Zheng, Gui-hua
Feng, Feng
Author_xml – sequence: 1
  givenname: Yan-song
  orcidid: 0000-0003-3433-4351
  surname: Yang
  fullname: Yang, Yan-song
  organization: Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Department of Radiology, Affiliated Cancer Hospital of Nantong University
– sequence: 2
  givenname: Feng
  surname: Feng
  fullname: Feng, Feng
  organization: Department of Radiology, Affiliated Cancer Hospital of Nantong University
– sequence: 3
  givenname: Yong-juan
  surname: Qiu
  fullname: Qiu, Yong-juan
  organization: Department of Radiology, Affiliated Cancer Hospital of Nantong University
– sequence: 4
  givenname: Gui-hua
  surname: Zheng
  fullname: Zheng, Gui-hua
  organization: Department of Pathology, Affiliated Cancer Hospital of Nantong University
– sequence: 5
  givenname: Ya-qiong
  surname: Ge
  fullname: Ge, Ya-qiong
  organization: GE Healthcare
– sequence: 6
  givenname: Yue-tao
  surname: Wang
  fullname: Wang, Yue-tao
  email: yuetao-w@163.com
  organization: Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32940755$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rHSEUxaUkNH-aL9BFEbrpZpqrjo6zLKFNAimFkEJ34jh3EsPMOFWn5G362evrS1rIIqDohd85yjlHZG8OMxLylsFHBtCcJgCuWAUcym6EqB5ekUMulKoApN77d69_HJCTlO4BgCnJGJevyYHgbQ2NlIfk94W_vasipjCu2YeZfr2-rDqbsKfR9j5M3iVqZztukk80B7pE7L3LdNxMyx2dQ490wmxTWX5L9jSvU4i0xyUknxMt3gu67H_huKF-LrPLdqTOzg7jG7I_2DHhyeN5TL5_-XxzdlFdfTu_PPt0VTnRyFzVQnMBzjXIVS2ltLW2A2jlOqaH1nWgdOOE0rbra3AdKuha5INFMZRBW3FMPux8lxh-rpiymXxyOI52xrAmw-vyhAYhm4K-f4behzWWBLZUq5tWsbYu1LtHau0m7M0S_WTjxjwlWwC9A1wMKUUcjPPZbiPO0frRMDDbHs2uR1N6NH97NA9Fyp9Jn9xfFImdKBV4vsX4_9svqP4Ak72x2A
CitedBy_id crossref_primary_10_1007_s13304_023_01618_0
crossref_primary_10_3390_diagnostics12102446
crossref_primary_10_1007_s00261_023_03825_0
crossref_primary_10_3389_fradi_2023_1212382
crossref_primary_10_1007_s00261_023_04013_w
crossref_primary_10_1007_s00261_022_03672_5
crossref_primary_10_3390_cancers15123082
crossref_primary_10_3390_cancers16173111
crossref_primary_10_1007_s10585_024_10293_3
crossref_primary_10_3389_fonc_2021_710248
crossref_primary_10_1038_s41598_023_35763_8
crossref_primary_10_3389_fonc_2021_671354
crossref_primary_10_3389_fonc_2024_1470824
crossref_primary_10_3389_fonc_2023_1230698
crossref_primary_10_3389_fonc_2024_1433190
crossref_primary_10_1097_JS9_0000000000001239
crossref_primary_10_1097_MD_0000000000034245
crossref_primary_10_3390_diagnostics13030474
crossref_primary_10_1016_j_ejrad_2023_111131
crossref_primary_10_3389_fonc_2022_927077
crossref_primary_10_3389_fonc_2024_1425665
crossref_primary_10_1016_j_acra_2022_11_005
crossref_primary_10_1016_j_remnie_2023_04_005
crossref_primary_10_1186_s13244_023_01564_w
crossref_primary_10_3389_fonc_2023_1194120
crossref_primary_10_1097_MD_0000000000034865
crossref_primary_10_3389_fonc_2021_637794
crossref_primary_10_1186_s12876_022_02525_1
crossref_primary_10_1186_s40644_022_00450_w
crossref_primary_10_3389_fonc_2022_1087882
crossref_primary_10_1007_s12029_022_00909_w
crossref_primary_10_3748_wjg_v28_i29_3960
crossref_primary_10_1186_s12885_021_08773_w
crossref_primary_10_3389_fonc_2023_1167289
crossref_primary_10_1016_j_asjsur_2023_09_156
crossref_primary_10_1148_ryai_230152
crossref_primary_10_1186_s13244_024_01726_4
crossref_primary_10_3389_fonc_2023_1078863
crossref_primary_10_1016_j_remn_2023_04_002
crossref_primary_10_1259_bjr_20210918
crossref_primary_10_1007_s00432_024_05986_x
crossref_primary_10_1007_s00330_023_09723_9
crossref_primary_10_1186_s13244_024_01625_8
crossref_primary_10_1007_s00261_024_04209_8
crossref_primary_10_1016_j_amjsurg_2024_01_002
Cites_doi 10.1007/s00261-019-02024-0
10.1007/s00259-020-04756-4
10.1038/ncomms5006
10.1007/s00330-020-06694-z
10.1111/codi.12909
10.1016/j.soc.2017.11.011
10.1038/nrclinonc.2017.141
10.1007/s10147-018-1349-5
10.1200/jco.2015.65.9128
10.3322/caac.21551
10.3393/ac.2019.06.12
10.1111/codi.14289
10.1200/jco.2016.68.9091
10.1016/j.crad.2019.07.026
10.1002/cncr.32347
10.1007/s10238-019-00552-z
10.21147/j.issn.1000-9604.2019.01.07
10.1007/s00261-019-02240-8
10.1148/rg.2019180114
10.1007/978-3-319-40618-3
10.1007/s10147-019-01485-z
10.1016/j.ejso.2015.06.008
10.1245/s10434-016-5379-9
10.1097/dcr.0000000000000321
10.1055/s-0036-1584289
10.1007/s00261-018-1642-9
10.1038/s41575-019-0189-8
10.1093/annonc/mdy161
10.1016/j.ejca.2017.05.027
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0S
M1P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00261-020-02733-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Computer Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2366-0058
EndPage 884
ExternalDocumentID 32940755
10_1007_s00261_020_02733_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Nantong University clinical research project
  grantid: NO. 2019LQ014
GroupedDBID -EM
04C
0R~
29~
2J2
2JN
2JY
2KG
2KM
2LR
406
53G
5VS
7RV
7X7
88E
8AO
8FH
8FI
8FJ
95-
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWZB
AGYKE
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJOOF
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BMSDO
BSONS
CCPQU
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GNWQR
GRRUI
H13
HCIFZ
HMCUK
IKXTQ
IMOTQ
ITM
IWAJR
J-C
JZLTJ
K7-
KOV
LK8
LLZTM
M1P
M4Y
M7P
NAPCQ
NPVJJ
NQJWS
NU0
O9J
PQQKQ
PROAC
PSQYO
PT4
QOR
R89
ROL
RSV
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
TSG
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
Z7X
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
---
.86
.VR
06C
06D
0VY
1N0
23M
2~H
30V
36B
3V.
4.4
408
409
40D
40E
5GY
5RE
67Z
6NX
7XB
8FD
8FE
8FG
8FK
8TC
95.
95~
96X
AAWCG
AAWTL
AAYQN
ABBXA
ABOCM
ACOMO
ADHIR
ADIMF
AEGAL
AENEX
AEPYU
AETLH
AFWTZ
AHAVH
AIIXL
AKMHD
ALWAN
AZQEC
BA0
BKEYQ
BPHCQ
BVXVI
CS3
DL5
DWQXO
ESBYG
EX3
F5P
FEDTE
FR3
G-Y
G-Z
GGRSB
GJIRD
GNUQQ
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IXC
IZIGR
IZQ
I~Z
J0Z
JQ2
K6V
K9.
KDC
KPH
LAS
M7Z
MA-
N9A
NB0
O93
O9I
OAM
OVD
P19
P62
P64
P9S
PF0
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q2X
QOK
QOS
R9I
RHV
RPX
RRX
S27
S37
S3B
SAP
SDH
SHX
SMD
T13
TSV
TT1
TUC
U2A
U9L
VC2
WH7
WJK
WK8
WOW
Z45
ZOVNA
7X8
ID FETCH-LOGICAL-c375t-438230cc7e264555a48af086cb18f9cb0687c368abd40cbe60b9e2fae3fbe68a3
IEDL.DBID 7X7
ISSN 2366-004X
2366-0058
IngestDate Thu Jul 10 22:43:36 EDT 2025
Fri Jul 25 09:26:11 EDT 2025
Wed Feb 19 02:28:23 EST 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Jul 01 02:12:35 EDT 2025
Fri Feb 21 02:48:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Rectal cancer
Magnetic resonance imaging
Nomogram
Lymph nodes
Radiomics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-438230cc7e264555a48af086cb18f9cb0687c368abd40cbe60b9e2fae3fbe68a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3433-4351
PMID 32940755
PQID 2498796194
PQPubID 31175
PageCount 12
ParticipantIDs proquest_miscellaneous_2443880357
proquest_journals_2498796194
pubmed_primary_32940755
crossref_citationtrail_10_1007_s00261_020_02733_x
crossref_primary_10_1007_s00261_020_02733_x
springer_journals_10_1007_s00261_020_02733_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Abdominal imaging
PublicationTitleAbbrev Abdom Radiol
PublicationTitleAlternate Abdom Radiol (NY)
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Sun, Tang, Cao, Zhang (CR16) 2015; 17
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR20) 2014; 5
Bouquot, Creavin, Goasguen, Chafai, Tiret, Andre, Flejou, Parc, Lefevre, Svrcek (CR13) 2018; 20
CR14
Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren, Sanduleanu, Larue, Even, Jochems, van Wijk, Woodruff, van Soest, Lustberg, Roelofs, van Elmpt, Dekker, Mottaghy, Wildberger, Walsh (CR21) 2017; 14
Amin, Edge, Greene, Byrd, Brookland (CR4) 2017
(CR8) 2019; 31
Jin, Frankel (CR9) 2018; 27
Xie, Du, Ho, Pang, Chiu, Lee, Vardhanabhuti (CR26) 2020
Jiang, Luo, Yuan, You, Chen, Wu, Wang, Gong (CR27) 2020
Lopez, Peterson (CR29) 2016; 29
Gollub, Arya, Beets-Tan, dePrisco, Gonen, Jhaveri, Kassam, Kaur, Kim, Knezevic, Korngold, Lall, Lalwani, Blair Macdonald, Moreno, Nougaret, Pickhardt, Sheedy, Harisinghani (CR25) 2018; 43
Virostko, Capasso, Yankeelov, Goodgame (CR3) 2019; 125
Nagtegaal, Knijn, Hugen, Marshall, Sugihara, Tot, Ueno, Quirke (CR12) 2017; 35
Keum, Giovannucci (CR2) 2019; 16
CR6
Verberne, Zhan, van den Heuvel, Grossmann, Doornbos, Havenga, Manusama, Klaase, van der Mijle, Lamme, Bosscha, Baas, van Ooijen, Nieuwenhuijzen, Marinelli, van der Zaag, Wasowicz, de Bock, Wiggers (CR30) 2015; 41
CR5
Gao, Li, Ma, Wang, Wang, Tian, Chen (CR18) 2019; 19
Hashiguchi, Muro, Saito, Ito, Ajioka, Hamaguchi, Hasegawa, Hotta, Ishida, Ishiguro, Ishihara, Kanemitsu, Kinugasa, Murofushi, Nakajima, Oka, Tanaka, Taniguchi, Tsuji, Uehara, Ueno, Yamanaka, Yamazaki, Yoshida, Yoshino, Itabashi, Sakamaki, Sano, Shimada, Tanaka, Uetake, Yamaguchi, Yamaguchi, Kobayashi, Matsuda, Kotake, Sugihara (CR7) 2020; 25
Horvat, Carlos Tavares Rocha, Clemente Oliveira, Petkovska, Gollub (CR23) 2019; 39
Weng, Zhou, Wang, Hui, Chen, Pang, Zheng, Xu, Wang, Ji (CR28) 2019; 74
Siegel, Miller, Jemal (CR1) 2019; 69
Hoshino, Murakami, Hida, Sakamoto, Sakai (CR15) 2019; 24
Yagi, Shimada, Kameyama, Tajima, Okamura, Sakata, Kobayashi, Kosugi, Wakai, Nogami, Maruyama, Takii, Kawasaki, Honma (CR11) 2016; 23
Langman, Patel, Bowley (CR19) 2015; 58
Huang, Liang, He, Tian, Liang, Chen, Ma, Liu (CR22) 2016; 34
Nougaret, Jhaveri, Kassam, Lall, Kim (CR24) 2019; 44
Liu, Wen, Yang, Lu, Xiao, Chen, Yu (CR17) 2019; 44
Kim, Choi (CR10) 2019; 35
S Nougaret (2733_CR24) 2019; 44
N Keum (2733_CR2) 2019; 16
N Hoshino (2733_CR15) 2019; 24
Y Liu (2733_CR17) 2019; 44
NE Lopez (2733_CR29) 2016; 29
2733_CR14
M Jin (2733_CR9) 2018; 27
R Yagi (2733_CR11) 2016; 23
M Bouquot (2733_CR13) 2018; 20
C Jiang (2733_CR27) 2020
ID Nagtegaal (2733_CR12) 2017; 35
XT Li (2733_CR16) 2015; 17
Diagnosis, Treatment Guidelines For Colorectal Cancer Working Group C (2733_CR8) 2019; 31
Y Gao (2733_CR18) 2019; 19
P Lambin (2733_CR21) 2017; 14
MB Amin (2733_CR4) 2017
RL Siegel (2733_CR1) 2019; 69
YQ Huang (2733_CR22) 2016; 34
N Horvat (2733_CR23) 2019; 39
Y Hashiguchi (2733_CR7) 2020; 25
HJ Kim (2733_CR10) 2019; 35
Q Weng (2733_CR28) 2019; 74
G Langman (2733_CR19) 2015; 58
HJ Aerts (2733_CR20) 2014; 5
C Xie (2733_CR26) 2020
CJ Verberne (2733_CR30) 2015; 41
J Virostko (2733_CR3) 2019; 125
2733_CR6
MJ Gollub (2733_CR25) 2018; 43
2733_CR5
References_xml – volume: 44
  start-page: 3536
  issue: 11
  year: 2019
  end-page: 3548
  ident: CR24
  article-title: Rectal cancer MR staging: pearls and pitfalls at baseline examination
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02024-0
– year: 2020
  ident: CR26
  article-title: Effect of machine learning re-sampling techniques for imbalanced datasets in (18)F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients
  publication-title: European journal of nuclear medicine and molecular imaging
  doi: 10.1007/s00259-020-04756-4
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR20
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– year: 2020
  ident: CR27
  article-title: CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma
  publication-title: European radiology
  doi: 10.1007/s00330-020-06694-z
– ident: CR14
– volume: 17
  start-page: O129
  issue: 6
  year: 2015
  end-page: 135
  ident: CR16
  article-title: Evaluating local lymph node metastasis with magnetic resonance imaging, endoluminal ultrasound and computed tomography in rectal cancer: a meta-analysis
  publication-title: Colorectal Dis
  doi: 10.1111/codi.12909
– volume: 27
  start-page: 401
  issue: 2
  year: 2018
  end-page: 412
  ident: CR9
  article-title: Lymph Node Metastasis in Colorectal Cancer
  publication-title: Surg Oncol Clin N Am
  doi: 10.1016/j.soc.2017.11.011
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  end-page: 762
  ident: CR21
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nature reviews Clinical oncology
  doi: 10.1038/nrclinonc.2017.141
– volume: 24
  start-page: 46
  issue: 1
  year: 2019
  end-page: 52
  ident: CR15
  article-title: Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-018-1349-5
– volume: 34
  start-page: 2157
  issue: 18
  year: 2016
  end-page: 2164
  ident: CR22
  article-title: Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2015.65.9128
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  end-page: 34
  ident: CR1
  article-title: Cancer statistics
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21551
– ident: CR6
– volume: 35
  start-page: 109
  issue: 3
  year: 2019
  end-page: 117
  ident: CR10
  article-title: Clinical Implications of Lymph Node Metastasis in Colorectal Cancer: Current Status and Future Perspectives
  publication-title: Ann Coloproctol
  doi: 10.3393/ac.2019.06.12
– volume: 20
  start-page: O248
  issue: 9
  year: 2018
  end-page: o255
  ident: CR13
  article-title: Prognostic value and characteristics of N1c colorectal cancer
  publication-title: Colorectal Dis
  doi: 10.1111/codi.14289
– volume: 35
  start-page: 1119
  issue: 10
  year: 2017
  end-page: 1127
  ident: CR12
  article-title: Tumor Deposits in Colorectal Cancer: Improving the Value of Modern Staging-A Systematic Review and Meta-Analysis
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2016.68.9091
– volume: 74
  start-page: 933
  issue: 12
  year: 2019
  end-page: 943
  ident: CR28
  article-title: A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules
  publication-title: Clinical radiology
  doi: 10.1016/j.crad.2019.07.026
– volume: 125
  start-page: 3828
  issue: 21
  year: 2019
  end-page: 3835
  ident: CR3
  article-title: Recent trends in the age at diagnosis of colorectal cancer in the US National Cancer Data Base, 2004-2015
  publication-title: Cancer
  doi: 10.1002/cncr.32347
– volume: 19
  start-page: 225
  issue: 2
  year: 2019
  end-page: 234
  ident: CR18
  article-title: The value of four imaging modalities in diagnosing lymph node involvement in rectal cancer: an overview and adjusted indirect comparison
  publication-title: Clin Exp Med
  doi: 10.1007/s10238-019-00552-z
– volume: 31
  start-page: 117
  issue: 1
  year: 2019
  end-page: 134
  ident: CR8
  article-title: Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version)
  publication-title: Chin J Cancer Res
  doi: 10.21147/j.issn.1000-9604.2019.01.07
– volume: 44
  start-page: 3625
  issue: 11
  year: 2019
  end-page: 3631
  ident: CR17
  article-title: Lymph node metastasis in rectal cancer: comparison of MDCT and MR imaging for diagnostic accuracy
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02240-8
– volume: 39
  start-page: 367
  issue: 2
  year: 2019
  end-page: 387
  ident: CR23
  article-title: MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management
  publication-title: Radiographics
  doi: 10.1148/rg.2019180114
– year: 2017
  ident: CR4
  publication-title: AJCC cancer staging manual
  doi: 10.1007/978-3-319-40618-3
– volume: 25
  start-page: 1
  issue: 1
  year: 2020
  end-page: 42
  ident: CR7
  article-title: Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-019-01485-z
– volume: 41
  start-page: 1188
  issue: 9
  year: 2015
  end-page: 1196
  ident: CR30
  article-title: Intensified follow-up in colorectal cancer patients using frequent Carcino-Embryonic Antigen (CEA) measurements and CEA-triggered imaging: Results of the randomized “CEAwatch” trial
  publication-title: Eur J Surg Oncol
  doi: 10.1016/j.ejso.2015.06.008
– volume: 23
  start-page: 552
  issue: Suppl 4
  year: 2016
  end-page: 558
  ident: CR11
  article-title: Clinical Significance of Extramural Tumor Deposits in the Lateral Pelvic Lymph Node Area in Low Rectal Cancer: A Retrospective Study at Two Institutions
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-016-5379-9
– volume: 58
  start-page: 406
  issue: 4
  year: 2015
  end-page: 414
  ident: CR19
  article-title: Size and distribution of lymph nodes in rectal cancer resection specimens
  publication-title: Diseases of the colon and rectum
  doi: 10.1097/dcr.0000000000000321
– volume: 29
  start-page: 196
  issue: 3
  year: 2016
  end-page: 204
  ident: CR29
  article-title: Advances in Biomarkers: Going Beyond the Carcinoembryonic Antigen
  publication-title: Clin Colon Rectal Surg
  doi: 10.1055/s-0036-1584289
– ident: CR5
– volume: 43
  start-page: 2893
  issue: 11
  year: 2018
  end-page: 2902
  ident: CR25
  article-title: Use of magnetic resonance imaging in rectal cancer patients: Society of Abdominal Radiology (SAR) rectal cancer disease-focused panel (DFP) recommendations 2017
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-018-1642-9
– volume: 16
  start-page: 713
  issue: 12
  year: 2019
  end-page: 732
  ident: CR2
  article-title: Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies
  publication-title: Nature reviews Gastroenterology & hepatology
  doi: 10.1038/s41575-019-0189-8
– volume: 74
  start-page: 933
  issue: 12
  year: 2019
  ident: 2733_CR28
  publication-title: Clinical radiology
  doi: 10.1016/j.crad.2019.07.026
– volume: 19
  start-page: 225
  issue: 2
  year: 2019
  ident: 2733_CR18
  publication-title: Clin Exp Med
  doi: 10.1007/s10238-019-00552-z
– volume: 35
  start-page: 109
  issue: 3
  year: 2019
  ident: 2733_CR10
  publication-title: Ann Coloproctol
  doi: 10.3393/ac.2019.06.12
– volume: 43
  start-page: 2893
  issue: 11
  year: 2018
  ident: 2733_CR25
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-018-1642-9
– volume: 17
  start-page: O129
  issue: 6
  year: 2015
  ident: 2733_CR16
  publication-title: Colorectal Dis
  doi: 10.1111/codi.12909
– volume: 39
  start-page: 367
  issue: 2
  year: 2019
  ident: 2733_CR23
  publication-title: Radiographics
  doi: 10.1148/rg.2019180114
– year: 2020
  ident: 2733_CR27
  publication-title: European radiology
  doi: 10.1007/s00330-020-06694-z
– year: 2020
  ident: 2733_CR26
  publication-title: European journal of nuclear medicine and molecular imaging
  doi: 10.1007/s00259-020-04756-4
– volume: 35
  start-page: 1119
  issue: 10
  year: 2017
  ident: 2733_CR12
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2016.68.9091
– volume: 14
  start-page: 749
  issue: 12
  year: 2017
  ident: 2733_CR21
  publication-title: Nature reviews Clinical oncology
  doi: 10.1038/nrclinonc.2017.141
– volume-title: AJCC cancer staging manual
  year: 2017
  ident: 2733_CR4
  doi: 10.1007/978-3-319-40618-3
– volume: 23
  start-page: 552
  issue: Suppl 4
  year: 2016
  ident: 2733_CR11
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-016-5379-9
– volume: 44
  start-page: 3536
  issue: 11
  year: 2019
  ident: 2733_CR24
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02024-0
– ident: 2733_CR6
  doi: 10.1093/annonc/mdy161
– volume: 24
  start-page: 46
  issue: 1
  year: 2019
  ident: 2733_CR15
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-018-1349-5
– volume: 125
  start-page: 3828
  issue: 21
  year: 2019
  ident: 2733_CR3
  publication-title: Cancer
  doi: 10.1002/cncr.32347
– volume: 31
  start-page: 117
  issue: 1
  year: 2019
  ident: 2733_CR8
  publication-title: Chin J Cancer Res
  doi: 10.21147/j.issn.1000-9604.2019.01.07
– volume: 41
  start-page: 1188
  issue: 9
  year: 2015
  ident: 2733_CR30
  publication-title: Eur J Surg Oncol
  doi: 10.1016/j.ejso.2015.06.008
– volume: 25
  start-page: 1
  issue: 1
  year: 2020
  ident: 2733_CR7
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-019-01485-z
– volume: 16
  start-page: 713
  issue: 12
  year: 2019
  ident: 2733_CR2
  publication-title: Nature reviews Gastroenterology & hepatology
  doi: 10.1038/s41575-019-0189-8
– volume: 58
  start-page: 406
  issue: 4
  year: 2015
  ident: 2733_CR19
  publication-title: Diseases of the colon and rectum
  doi: 10.1097/dcr.0000000000000321
– volume: 27
  start-page: 401
  issue: 2
  year: 2018
  ident: 2733_CR9
  publication-title: Surg Oncol Clin N Am
  doi: 10.1016/j.soc.2017.11.011
– volume: 69
  start-page: 7
  issue: 1
  year: 2019
  ident: 2733_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21551
– volume: 44
  start-page: 3625
  issue: 11
  year: 2019
  ident: 2733_CR17
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02240-8
– volume: 29
  start-page: 196
  issue: 3
  year: 2016
  ident: 2733_CR29
  publication-title: Clin Colon Rectal Surg
  doi: 10.1055/s-0036-1584289
– volume: 20
  start-page: O248
  issue: 9
  year: 2018
  ident: 2733_CR13
  publication-title: Colorectal Dis
  doi: 10.1111/codi.14289
– ident: 2733_CR14
  doi: 10.1016/j.ejca.2017.05.027
– volume: 5
  start-page: 4006
  year: 2014
  ident: 2733_CR20
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– ident: 2733_CR5
– volume: 34
  start-page: 2157
  issue: 18
  year: 2016
  ident: 2733_CR22
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2015.65.9128
SSID ssj0001651125
ssj0008379
Score 2.499024
Snippet Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs)...
To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in...
PurposeTo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs)...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 873
SubjectTerms Cancer
Colorectal cancer
Confidence intervals
Feature extraction
Gastroenterology
Hepatology
High resolution
Image resolution
Image segmentation
Imaging
Lymph nodes
Lymphatic system
Magnetic resonance imaging
Medicine
Medicine & Public Health
Metastases
Metastasis
Nomograms
Performance prediction
Radiology
Radiomics
Rectum
Risk analysis
Risk factors
Sensitivity
Special Section: Rectal Cancer
Training
Tumors
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hrYS4QHkHCjISN3CVJrHjPVZVSwEtB8RKyynyYyJV3SZVNivRHvrbGXudUCgg9Rhl7DjOOPN9nocB3kpty0y5kkudW16QReY61Y4biVajszWGAqazL_J4XnxaiEVMClsN0e6DSzL8qcdkt0AXuKc7vgZLzgk5bhH-SIsJbO1_-P752t6K9DBChHPlJBHmtFjEfJm_d_S7TboBNG84SYPtOXoA82HUm5CT0911b3bt5R8FHW_7WttwP4JRtr_RnodwB5tHcHcW3e2P4cpHgXAi5FE_2ezrR-7tnmOddic-oXnFdCxrwvqWnXe-bc-WF6QkrGkdsjPsNSFQL6Abx_r1WdsxhyFYbMWo75jqubxgJw3z_18akfW62D2B-dHht4NjHg9s4DYvRc-DUzG1tkSCWUIIXShdE2eyZk_VU2tSqUqbS6WNK1JrUKZmilmtMa_pQun8KUyatsHnwFARvZW61DarC5mh0io3BlGI2oPaOoG94ZNVNlYz94dqLKuxDnOY2IomtgoTW_1I4N3Y5nxTy-O_0juDJlRxXa8qIquqnPqdnwTejLdpRXo3i26wXXuZwlfYyUWZwLONBo2Py7MpMWghEng_aMOvzv89lhe3E38J9zIfehNC5XZg0ndrfEXYqTev41L5Cf0CET8
  priority: 102
  providerName: Springer Nature
Title High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer
URI https://link.springer.com/article/10.1007/s00261-020-02733-x
https://www.ncbi.nlm.nih.gov/pubmed/32940755
https://www.proquest.com/docview/2498796194
https://www.proquest.com/docview/2443880357
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_e564oGe9vEXMuSlaeSlKTdRsIoC2RPRjdDIbVTx4H2Zb995yiKyyjri4XRxcJHl_PpnPOJkE9S2yJTrmBSc8ty2JGZTrVjRnqrvbOVDwSm05k8n-ffF2IRD9zW0a1ytyaGhdo1Fs_IvwJMUMUAMffJ6prhrVFoXY1XaDwm-0hdhi5dxaIHXKBdBK69jEtAzWm-iEEzIXQugA-G4AkZXTi7-Xdjuqdt3rOUhg1o8pw8i5ojHW5F_YI88vVL8mQabeOvyB902WCAnuNgotOLbww3KUdb7S4x-nhNdeQgoV1DVy3W7ejyFiRK68Z5euU7DeoiFtC1o93mqmmp88Gza02h7RiXubyllzXFxRJ6ZHHgtK_JfDL-dXrO4u0KzPJCdCxYAFNrCw86kRBC50pXAHCsOVbVwJpUqsJyqbRxeWqNl6kZ-KzSnlfwojR_Q_bqpvbvCPUKsKjUhbZZlcvMK624Md4LUaEGWiXkePdrSxupx_EGjGXZkyYHcZQgjjKIo7xJyOe-zmpLvPFg6cOdxMo4Cdfl3ZBJyMc-G6YP2kR07ZsNlsmRDoeLIiFvt5LuP8ezAcBdIRLyZSf6u8b_35eDh_vynjzN0C8m-LEdkr2u3fgPoNh05iiMXniqydkR2R9ORqMZpme_f4whHY1nPy8gd54N_wJJKfy_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN5pCxgJTmCRxrHjHCqEgGWXdntArbS34NiOVGmbbLNZ0b30J_Eb8TiPClX01mMU27E8D8-XeQG8FUonkTQJFYppGrsbmapQGZoLq5U1urC-gOn0SIxP4h8zPtuAP30uDIZV9jrRK2pTafxH_tHBBJmkiLk_Lc4pdo1C72rfQqNliwO7_u0g23J_8tXR910Ujb4dfxnTrqsA1SzhDfWer1DrxDpbgHOuYqkKZ9jrfE8Wqc5DIRPNhFS5iUOdWxHmqY0KZVnhHqRibt07cDdmLEWJkqPvg-aXbW2_iAmH0sN41iXp-FQ9D3YogjWsIMPoxb8X4TXr9ppn1l94oy142Fmq5HPLWo9gw5aP4d6088U_gUsMEaEOrXfMS6Y_JxQvRUNqZU4x23lJVFfzhDQVWdQ4tyHzteMgUlbGkjPbKGee4gBVGtKszqqaGOsjyZbErd3lgc7X5LQkqJzdjjQyav0UTm7l3J_BZlmV9gUQKx32FSpROipiEVmpJMtzazkv0OItAtjrjzbTXalz7Lgxz4YizZ4cmSNH5smRXQTwfpizaAt93Dh6t6dY1gn9Mrti0QDeDK-duKIPRpW2WuGYGMvvMJ4E8Lyl9PA5FqUOXnMewIee9FeL_38v2zfv5TXcHx9PD7PDydHBDjyIMCbHx9DtwmZTr-xLZ1Q1-SvPyQR-3bbo_AWBfTQl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZe0LiHDTASPIG1NI4vfUAIMaqV0QkhJvUtOLYjTeqS0qZifeGH8es4x3UyoYm97TGK7Vg-F58v50bIK2msyrRTTBpuWQ43MjOpcayU3hrvbOVDAdPJiTw6zT9PxXSL_OlyYTCsstOJQVG7xuI_8gOACVoNEXMfVDEs4uvh6P38J8MOUuhp7dppbFjk2K9_AXxbvhsfAq1fZ9no0_ePRyx2GGCWK9Gy4AVLrVUe7AIhhMm1qcDIt-VAV0NbplIry6U2pctTW3qZlkOfVcbzCh604bDuLXJbcTFAGVPTHuyBZRPq_GVcAmJP82lM2AlpewH4MARuWE2Gs4t_L8Urlu4VL224_Ea75G60WumHDZvdI1u-vk92JtEv_4D8xnARBsg9MjKdfBszvCAdXRh3hpnPS2pi_RPaNnS-wLktna2Bm2jdOE_PfWvAVMUBpna0XZ03C-p8iCpbUlg75oTO1vSspqioYUcWmXbxkJzeyLk_Itt1U_snhHoNOFgaZWxW5TLz2mhelt4LUaH1WyVk0B1tYWPZc-y-MSv6gs2BHAWQowjkKC4S8qafM98U_bh29H5HsSIqgGVxya4Jedm_BtFFf4ypfbPCMTmW4uFCJeTxhtL953g2BKgtRELedqS_XPz_e3l6_V5ekB0QmuLL-OR4j9zJMDwnhNPtk-12sfLPwL5qy-eBkSn5cdOS8xesuDhS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+MRI-based+radiomics+analysis+to+predict+lymph+node+metastasis+and+tumor+deposits+respectively+in+rectal+cancer&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Yang%2C+Yan-Song&rft.au=Feng%2C+Feng&rft.au=Qiu%2C+Yong-Juan&rft.au=Zheng%2C+Gui-Hua&rft.date=2021-03-01&rft.issn=2366-0058&rft.eissn=2366-0058&rft.volume=46&rft.issue=3&rft.spage=873&rft_id=info:doi/10.1007%2Fs00261-020-02733-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon