High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer
Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enro...
Saved in:
Published in | Abdominal imaging Vol. 46; no. 3; pp. 873 - 884 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.
Methods
A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.
Results
The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test,
p
= 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test,
p
= 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test,
p
= 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.
Conclusion
HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. |
---|---|
AbstractList | To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.PURPOSETo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.METHODSA total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.RESULTSThe predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients.CONCLUSIONHRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83-0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74-0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67-0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76-0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71-0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69-0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature. Results The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort. Conclusion HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. PurposeTo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.MethodsA total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.ResultsThe predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test, p = 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test, p = 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test, p = 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.ConclusionHRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. |
Author | Yang, Yan-song Wang, Yue-tao Ge, Ya-qiong Qiu, Yong-juan Zheng, Gui-hua Feng, Feng |
Author_xml | – sequence: 1 givenname: Yan-song orcidid: 0000-0003-3433-4351 surname: Yang fullname: Yang, Yan-song organization: Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Department of Radiology, Affiliated Cancer Hospital of Nantong University – sequence: 2 givenname: Feng surname: Feng fullname: Feng, Feng organization: Department of Radiology, Affiliated Cancer Hospital of Nantong University – sequence: 3 givenname: Yong-juan surname: Qiu fullname: Qiu, Yong-juan organization: Department of Radiology, Affiliated Cancer Hospital of Nantong University – sequence: 4 givenname: Gui-hua surname: Zheng fullname: Zheng, Gui-hua organization: Department of Pathology, Affiliated Cancer Hospital of Nantong University – sequence: 5 givenname: Ya-qiong surname: Ge fullname: Ge, Ya-qiong organization: GE Healthcare – sequence: 6 givenname: Yue-tao surname: Wang fullname: Wang, Yue-tao email: yuetao-w@163.com organization: Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32940755$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rHSEUxaUkNH-aL9BFEbrpZpqrjo6zLKFNAimFkEJ34jh3EsPMOFWn5G362evrS1rIIqDohd85yjlHZG8OMxLylsFHBtCcJgCuWAUcym6EqB5ekUMulKoApN77d69_HJCTlO4BgCnJGJevyYHgbQ2NlIfk94W_vasipjCu2YeZfr2-rDqbsKfR9j5M3iVqZztukk80B7pE7L3LdNxMyx2dQ490wmxTWX5L9jSvU4i0xyUknxMt3gu67H_huKF-LrPLdqTOzg7jG7I_2DHhyeN5TL5_-XxzdlFdfTu_PPt0VTnRyFzVQnMBzjXIVS2ltLW2A2jlOqaH1nWgdOOE0rbra3AdKuha5INFMZRBW3FMPux8lxh-rpiymXxyOI52xrAmw-vyhAYhm4K-f4behzWWBLZUq5tWsbYu1LtHau0m7M0S_WTjxjwlWwC9A1wMKUUcjPPZbiPO0frRMDDbHs2uR1N6NH97NA9Fyp9Jn9xfFImdKBV4vsX4_9svqP4Ak72x2A |
CitedBy_id | crossref_primary_10_1007_s13304_023_01618_0 crossref_primary_10_3390_diagnostics12102446 crossref_primary_10_1007_s00261_023_03825_0 crossref_primary_10_3389_fradi_2023_1212382 crossref_primary_10_1007_s00261_023_04013_w crossref_primary_10_1007_s00261_022_03672_5 crossref_primary_10_3390_cancers15123082 crossref_primary_10_3390_cancers16173111 crossref_primary_10_1007_s10585_024_10293_3 crossref_primary_10_3389_fonc_2021_710248 crossref_primary_10_1038_s41598_023_35763_8 crossref_primary_10_3389_fonc_2021_671354 crossref_primary_10_3389_fonc_2024_1470824 crossref_primary_10_3389_fonc_2023_1230698 crossref_primary_10_3389_fonc_2024_1433190 crossref_primary_10_1097_JS9_0000000000001239 crossref_primary_10_1097_MD_0000000000034245 crossref_primary_10_3390_diagnostics13030474 crossref_primary_10_1016_j_ejrad_2023_111131 crossref_primary_10_3389_fonc_2022_927077 crossref_primary_10_3389_fonc_2024_1425665 crossref_primary_10_1016_j_acra_2022_11_005 crossref_primary_10_1016_j_remnie_2023_04_005 crossref_primary_10_1186_s13244_023_01564_w crossref_primary_10_3389_fonc_2023_1194120 crossref_primary_10_1097_MD_0000000000034865 crossref_primary_10_3389_fonc_2021_637794 crossref_primary_10_1186_s12876_022_02525_1 crossref_primary_10_1186_s40644_022_00450_w crossref_primary_10_3389_fonc_2022_1087882 crossref_primary_10_1007_s12029_022_00909_w crossref_primary_10_3748_wjg_v28_i29_3960 crossref_primary_10_1186_s12885_021_08773_w crossref_primary_10_3389_fonc_2023_1167289 crossref_primary_10_1016_j_asjsur_2023_09_156 crossref_primary_10_1148_ryai_230152 crossref_primary_10_1186_s13244_024_01726_4 crossref_primary_10_3389_fonc_2023_1078863 crossref_primary_10_1016_j_remn_2023_04_002 crossref_primary_10_1259_bjr_20210918 crossref_primary_10_1007_s00432_024_05986_x crossref_primary_10_1007_s00330_023_09723_9 crossref_primary_10_1186_s13244_024_01625_8 crossref_primary_10_1007_s00261_024_04209_8 crossref_primary_10_1016_j_amjsurg_2024_01_002 |
Cites_doi | 10.1007/s00261-019-02024-0 10.1007/s00259-020-04756-4 10.1038/ncomms5006 10.1007/s00330-020-06694-z 10.1111/codi.12909 10.1016/j.soc.2017.11.011 10.1038/nrclinonc.2017.141 10.1007/s10147-018-1349-5 10.1200/jco.2015.65.9128 10.3322/caac.21551 10.3393/ac.2019.06.12 10.1111/codi.14289 10.1200/jco.2016.68.9091 10.1016/j.crad.2019.07.026 10.1002/cncr.32347 10.1007/s10238-019-00552-z 10.21147/j.issn.1000-9604.2019.01.07 10.1007/s00261-019-02240-8 10.1148/rg.2019180114 10.1007/978-3-319-40618-3 10.1007/s10147-019-01485-z 10.1016/j.ejso.2015.06.008 10.1245/s10434-016-5379-9 10.1097/dcr.0000000000000321 10.1055/s-0036-1584289 10.1007/s00261-018-1642-9 10.1038/s41575-019-0189-8 10.1093/annonc/mdy161 10.1016/j.ejca.2017.05.027 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. KB0 LK8 M0S M1P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00261-020-02733-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Computer Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2366-0058 |
EndPage | 884 |
ExternalDocumentID | 32940755 10_1007_s00261_020_02733_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Nantong University clinical research project grantid: NO. 2019LQ014 |
GroupedDBID | -EM 04C 0R~ 29~ 2J2 2JN 2JY 2KG 2KM 2LR 406 53G 5VS 7RV 7X7 88E 8AO 8FH 8FI 8FJ 95- AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACUDM ACZOJ ADBBV ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWZB AGYKE AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJOOF AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BMSDO BSONS CCPQU CSCUP DDRTE DNIVK DPUIP EBLON EBS EIHBH EIOEI EJD EMB EMOBN FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GNWQR GRRUI H13 HCIFZ HMCUK IKXTQ IMOTQ ITM IWAJR J-C JZLTJ K7- KOV LK8 LLZTM M1P M4Y M7P NAPCQ NPVJJ NQJWS NU0 O9J PQQKQ PROAC PSQYO PT4 QOR R89 ROL RSV S16 SCLPG SDE SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN TSG UG4 UKHRP UOJIU UTJUX UZXMN VFIZW W23 YLTOR Z7X Z83 Z87 Z8V Z8W Z91 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM --- .86 .VR 06C 06D 0VY 1N0 23M 2~H 30V 36B 3V. 4.4 408 409 40D 40E 5GY 5RE 67Z 6NX 7XB 8FD 8FE 8FG 8FK 8TC 95. 95~ 96X AAWCG AAWTL AAYQN ABBXA ABOCM ACOMO ADHIR ADIMF AEGAL AENEX AEPYU AETLH AFWTZ AHAVH AIIXL AKMHD ALWAN AZQEC BA0 BKEYQ BPHCQ BVXVI CS3 DL5 DWQXO ESBYG EX3 F5P FEDTE FR3 G-Y G-Z GGRSB GJIRD GNUQQ GQ7 GQ8 GXS HF~ HG5 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IXC IZIGR IZQ I~Z J0Z JQ2 K6V K9. KDC KPH LAS M7Z MA- N9A NB0 O93 O9I OAM OVD P19 P62 P64 P9S PF0 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q2X QOK QOS R9I RHV RPX RRX S27 S37 S3B SAP SDH SHX SMD T13 TSV TT1 TUC U2A U9L VC2 WH7 WJK WK8 WOW Z45 ZOVNA 7X8 |
ID | FETCH-LOGICAL-c375t-438230cc7e264555a48af086cb18f9cb0687c368abd40cbe60b9e2fae3fbe68a3 |
IEDL.DBID | 7X7 |
ISSN | 2366-004X 2366-0058 |
IngestDate | Thu Jul 10 22:43:36 EDT 2025 Fri Jul 25 09:26:11 EDT 2025 Wed Feb 19 02:28:23 EST 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Jul 01 02:12:35 EDT 2025 Fri Feb 21 02:48:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Rectal cancer Magnetic resonance imaging Nomogram Lymph nodes Radiomics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-438230cc7e264555a48af086cb18f9cb0687c368abd40cbe60b9e2fae3fbe68a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3433-4351 |
PMID | 32940755 |
PQID | 2498796194 |
PQPubID | 31175 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2443880357 proquest_journals_2498796194 pubmed_primary_32940755 crossref_citationtrail_10_1007_s00261_020_02733_x crossref_primary_10_1007_s00261_020_02733_x springer_journals_10_1007_s00261_020_02733_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210300 2021-03-00 20210301 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Abdominal imaging |
PublicationTitleAbbrev | Abdom Radiol |
PublicationTitleAlternate | Abdom Radiol (NY) |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li, Sun, Tang, Cao, Zhang (CR16) 2015; 17 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR20) 2014; 5 Bouquot, Creavin, Goasguen, Chafai, Tiret, Andre, Flejou, Parc, Lefevre, Svrcek (CR13) 2018; 20 CR14 Lambin, Leijenaar, Deist, Peerlings, de Jong, van Timmeren, Sanduleanu, Larue, Even, Jochems, van Wijk, Woodruff, van Soest, Lustberg, Roelofs, van Elmpt, Dekker, Mottaghy, Wildberger, Walsh (CR21) 2017; 14 Amin, Edge, Greene, Byrd, Brookland (CR4) 2017 (CR8) 2019; 31 Jin, Frankel (CR9) 2018; 27 Xie, Du, Ho, Pang, Chiu, Lee, Vardhanabhuti (CR26) 2020 Jiang, Luo, Yuan, You, Chen, Wu, Wang, Gong (CR27) 2020 Lopez, Peterson (CR29) 2016; 29 Gollub, Arya, Beets-Tan, dePrisco, Gonen, Jhaveri, Kassam, Kaur, Kim, Knezevic, Korngold, Lall, Lalwani, Blair Macdonald, Moreno, Nougaret, Pickhardt, Sheedy, Harisinghani (CR25) 2018; 43 Virostko, Capasso, Yankeelov, Goodgame (CR3) 2019; 125 Nagtegaal, Knijn, Hugen, Marshall, Sugihara, Tot, Ueno, Quirke (CR12) 2017; 35 Keum, Giovannucci (CR2) 2019; 16 CR6 Verberne, Zhan, van den Heuvel, Grossmann, Doornbos, Havenga, Manusama, Klaase, van der Mijle, Lamme, Bosscha, Baas, van Ooijen, Nieuwenhuijzen, Marinelli, van der Zaag, Wasowicz, de Bock, Wiggers (CR30) 2015; 41 CR5 Gao, Li, Ma, Wang, Wang, Tian, Chen (CR18) 2019; 19 Hashiguchi, Muro, Saito, Ito, Ajioka, Hamaguchi, Hasegawa, Hotta, Ishida, Ishiguro, Ishihara, Kanemitsu, Kinugasa, Murofushi, Nakajima, Oka, Tanaka, Taniguchi, Tsuji, Uehara, Ueno, Yamanaka, Yamazaki, Yoshida, Yoshino, Itabashi, Sakamaki, Sano, Shimada, Tanaka, Uetake, Yamaguchi, Yamaguchi, Kobayashi, Matsuda, Kotake, Sugihara (CR7) 2020; 25 Horvat, Carlos Tavares Rocha, Clemente Oliveira, Petkovska, Gollub (CR23) 2019; 39 Weng, Zhou, Wang, Hui, Chen, Pang, Zheng, Xu, Wang, Ji (CR28) 2019; 74 Siegel, Miller, Jemal (CR1) 2019; 69 Hoshino, Murakami, Hida, Sakamoto, Sakai (CR15) 2019; 24 Yagi, Shimada, Kameyama, Tajima, Okamura, Sakata, Kobayashi, Kosugi, Wakai, Nogami, Maruyama, Takii, Kawasaki, Honma (CR11) 2016; 23 Langman, Patel, Bowley (CR19) 2015; 58 Huang, Liang, He, Tian, Liang, Chen, Ma, Liu (CR22) 2016; 34 Nougaret, Jhaveri, Kassam, Lall, Kim (CR24) 2019; 44 Liu, Wen, Yang, Lu, Xiao, Chen, Yu (CR17) 2019; 44 Kim, Choi (CR10) 2019; 35 S Nougaret (2733_CR24) 2019; 44 N Keum (2733_CR2) 2019; 16 N Hoshino (2733_CR15) 2019; 24 Y Liu (2733_CR17) 2019; 44 NE Lopez (2733_CR29) 2016; 29 2733_CR14 M Jin (2733_CR9) 2018; 27 R Yagi (2733_CR11) 2016; 23 M Bouquot (2733_CR13) 2018; 20 C Jiang (2733_CR27) 2020 ID Nagtegaal (2733_CR12) 2017; 35 XT Li (2733_CR16) 2015; 17 Diagnosis, Treatment Guidelines For Colorectal Cancer Working Group C (2733_CR8) 2019; 31 Y Gao (2733_CR18) 2019; 19 P Lambin (2733_CR21) 2017; 14 MB Amin (2733_CR4) 2017 RL Siegel (2733_CR1) 2019; 69 YQ Huang (2733_CR22) 2016; 34 N Horvat (2733_CR23) 2019; 39 Y Hashiguchi (2733_CR7) 2020; 25 HJ Kim (2733_CR10) 2019; 35 Q Weng (2733_CR28) 2019; 74 G Langman (2733_CR19) 2015; 58 HJ Aerts (2733_CR20) 2014; 5 C Xie (2733_CR26) 2020 CJ Verberne (2733_CR30) 2015; 41 J Virostko (2733_CR3) 2019; 125 2733_CR6 MJ Gollub (2733_CR25) 2018; 43 2733_CR5 |
References_xml | – volume: 44 start-page: 3536 issue: 11 year: 2019 end-page: 3548 ident: CR24 article-title: Rectal cancer MR staging: pearls and pitfalls at baseline examination publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02024-0 – year: 2020 ident: CR26 article-title: Effect of machine learning re-sampling techniques for imbalanced datasets in (18)F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients publication-title: European journal of nuclear medicine and molecular imaging doi: 10.1007/s00259-020-04756-4 – volume: 5 start-page: 4006 year: 2014 ident: CR20 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – year: 2020 ident: CR27 article-title: CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma publication-title: European radiology doi: 10.1007/s00330-020-06694-z – ident: CR14 – volume: 17 start-page: O129 issue: 6 year: 2015 end-page: 135 ident: CR16 article-title: Evaluating local lymph node metastasis with magnetic resonance imaging, endoluminal ultrasound and computed tomography in rectal cancer: a meta-analysis publication-title: Colorectal Dis doi: 10.1111/codi.12909 – volume: 27 start-page: 401 issue: 2 year: 2018 end-page: 412 ident: CR9 article-title: Lymph Node Metastasis in Colorectal Cancer publication-title: Surg Oncol Clin N Am doi: 10.1016/j.soc.2017.11.011 – volume: 14 start-page: 749 issue: 12 year: 2017 end-page: 762 ident: CR21 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nature reviews Clinical oncology doi: 10.1038/nrclinonc.2017.141 – volume: 24 start-page: 46 issue: 1 year: 2019 end-page: 52 ident: CR15 article-title: Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis publication-title: Int J Clin Oncol doi: 10.1007/s10147-018-1349-5 – volume: 34 start-page: 2157 issue: 18 year: 2016 end-page: 2164 ident: CR22 article-title: Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer publication-title: J Clin Oncol doi: 10.1200/jco.2015.65.9128 – volume: 69 start-page: 7 issue: 1 year: 2019 end-page: 34 ident: CR1 article-title: Cancer statistics publication-title: CA Cancer J Clin doi: 10.3322/caac.21551 – ident: CR6 – volume: 35 start-page: 109 issue: 3 year: 2019 end-page: 117 ident: CR10 article-title: Clinical Implications of Lymph Node Metastasis in Colorectal Cancer: Current Status and Future Perspectives publication-title: Ann Coloproctol doi: 10.3393/ac.2019.06.12 – volume: 20 start-page: O248 issue: 9 year: 2018 end-page: o255 ident: CR13 article-title: Prognostic value and characteristics of N1c colorectal cancer publication-title: Colorectal Dis doi: 10.1111/codi.14289 – volume: 35 start-page: 1119 issue: 10 year: 2017 end-page: 1127 ident: CR12 article-title: Tumor Deposits in Colorectal Cancer: Improving the Value of Modern Staging-A Systematic Review and Meta-Analysis publication-title: J Clin Oncol doi: 10.1200/jco.2016.68.9091 – volume: 74 start-page: 933 issue: 12 year: 2019 end-page: 943 ident: CR28 article-title: A radiomics model for determining the invasiveness of solitary pulmonary nodules that manifest as part-solid nodules publication-title: Clinical radiology doi: 10.1016/j.crad.2019.07.026 – volume: 125 start-page: 3828 issue: 21 year: 2019 end-page: 3835 ident: CR3 article-title: Recent trends in the age at diagnosis of colorectal cancer in the US National Cancer Data Base, 2004-2015 publication-title: Cancer doi: 10.1002/cncr.32347 – volume: 19 start-page: 225 issue: 2 year: 2019 end-page: 234 ident: CR18 article-title: The value of four imaging modalities in diagnosing lymph node involvement in rectal cancer: an overview and adjusted indirect comparison publication-title: Clin Exp Med doi: 10.1007/s10238-019-00552-z – volume: 31 start-page: 117 issue: 1 year: 2019 end-page: 134 ident: CR8 article-title: Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for colorectal cancer 2018 (English version) publication-title: Chin J Cancer Res doi: 10.21147/j.issn.1000-9604.2019.01.07 – volume: 44 start-page: 3625 issue: 11 year: 2019 end-page: 3631 ident: CR17 article-title: Lymph node metastasis in rectal cancer: comparison of MDCT and MR imaging for diagnostic accuracy publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02240-8 – volume: 39 start-page: 367 issue: 2 year: 2019 end-page: 387 ident: CR23 article-title: MRI of Rectal Cancer: Tumor Staging, Imaging Techniques, and Management publication-title: Radiographics doi: 10.1148/rg.2019180114 – year: 2017 ident: CR4 publication-title: AJCC cancer staging manual doi: 10.1007/978-3-319-40618-3 – volume: 25 start-page: 1 issue: 1 year: 2020 end-page: 42 ident: CR7 article-title: Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer publication-title: Int J Clin Oncol doi: 10.1007/s10147-019-01485-z – volume: 41 start-page: 1188 issue: 9 year: 2015 end-page: 1196 ident: CR30 article-title: Intensified follow-up in colorectal cancer patients using frequent Carcino-Embryonic Antigen (CEA) measurements and CEA-triggered imaging: Results of the randomized “CEAwatch” trial publication-title: Eur J Surg Oncol doi: 10.1016/j.ejso.2015.06.008 – volume: 23 start-page: 552 issue: Suppl 4 year: 2016 end-page: 558 ident: CR11 article-title: Clinical Significance of Extramural Tumor Deposits in the Lateral Pelvic Lymph Node Area in Low Rectal Cancer: A Retrospective Study at Two Institutions publication-title: Ann Surg Oncol doi: 10.1245/s10434-016-5379-9 – volume: 58 start-page: 406 issue: 4 year: 2015 end-page: 414 ident: CR19 article-title: Size and distribution of lymph nodes in rectal cancer resection specimens publication-title: Diseases of the colon and rectum doi: 10.1097/dcr.0000000000000321 – volume: 29 start-page: 196 issue: 3 year: 2016 end-page: 204 ident: CR29 article-title: Advances in Biomarkers: Going Beyond the Carcinoembryonic Antigen publication-title: Clin Colon Rectal Surg doi: 10.1055/s-0036-1584289 – ident: CR5 – volume: 43 start-page: 2893 issue: 11 year: 2018 end-page: 2902 ident: CR25 article-title: Use of magnetic resonance imaging in rectal cancer patients: Society of Abdominal Radiology (SAR) rectal cancer disease-focused panel (DFP) recommendations 2017 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-018-1642-9 – volume: 16 start-page: 713 issue: 12 year: 2019 end-page: 732 ident: CR2 article-title: Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies publication-title: Nature reviews Gastroenterology & hepatology doi: 10.1038/s41575-019-0189-8 – volume: 74 start-page: 933 issue: 12 year: 2019 ident: 2733_CR28 publication-title: Clinical radiology doi: 10.1016/j.crad.2019.07.026 – volume: 19 start-page: 225 issue: 2 year: 2019 ident: 2733_CR18 publication-title: Clin Exp Med doi: 10.1007/s10238-019-00552-z – volume: 35 start-page: 109 issue: 3 year: 2019 ident: 2733_CR10 publication-title: Ann Coloproctol doi: 10.3393/ac.2019.06.12 – volume: 43 start-page: 2893 issue: 11 year: 2018 ident: 2733_CR25 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-018-1642-9 – volume: 17 start-page: O129 issue: 6 year: 2015 ident: 2733_CR16 publication-title: Colorectal Dis doi: 10.1111/codi.12909 – volume: 39 start-page: 367 issue: 2 year: 2019 ident: 2733_CR23 publication-title: Radiographics doi: 10.1148/rg.2019180114 – year: 2020 ident: 2733_CR27 publication-title: European radiology doi: 10.1007/s00330-020-06694-z – year: 2020 ident: 2733_CR26 publication-title: European journal of nuclear medicine and molecular imaging doi: 10.1007/s00259-020-04756-4 – volume: 35 start-page: 1119 issue: 10 year: 2017 ident: 2733_CR12 publication-title: J Clin Oncol doi: 10.1200/jco.2016.68.9091 – volume: 14 start-page: 749 issue: 12 year: 2017 ident: 2733_CR21 publication-title: Nature reviews Clinical oncology doi: 10.1038/nrclinonc.2017.141 – volume-title: AJCC cancer staging manual year: 2017 ident: 2733_CR4 doi: 10.1007/978-3-319-40618-3 – volume: 23 start-page: 552 issue: Suppl 4 year: 2016 ident: 2733_CR11 publication-title: Ann Surg Oncol doi: 10.1245/s10434-016-5379-9 – volume: 44 start-page: 3536 issue: 11 year: 2019 ident: 2733_CR24 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02024-0 – ident: 2733_CR6 doi: 10.1093/annonc/mdy161 – volume: 24 start-page: 46 issue: 1 year: 2019 ident: 2733_CR15 publication-title: Int J Clin Oncol doi: 10.1007/s10147-018-1349-5 – volume: 125 start-page: 3828 issue: 21 year: 2019 ident: 2733_CR3 publication-title: Cancer doi: 10.1002/cncr.32347 – volume: 31 start-page: 117 issue: 1 year: 2019 ident: 2733_CR8 publication-title: Chin J Cancer Res doi: 10.21147/j.issn.1000-9604.2019.01.07 – volume: 41 start-page: 1188 issue: 9 year: 2015 ident: 2733_CR30 publication-title: Eur J Surg Oncol doi: 10.1016/j.ejso.2015.06.008 – volume: 25 start-page: 1 issue: 1 year: 2020 ident: 2733_CR7 publication-title: Int J Clin Oncol doi: 10.1007/s10147-019-01485-z – volume: 16 start-page: 713 issue: 12 year: 2019 ident: 2733_CR2 publication-title: Nature reviews Gastroenterology & hepatology doi: 10.1038/s41575-019-0189-8 – volume: 58 start-page: 406 issue: 4 year: 2015 ident: 2733_CR19 publication-title: Diseases of the colon and rectum doi: 10.1097/dcr.0000000000000321 – volume: 27 start-page: 401 issue: 2 year: 2018 ident: 2733_CR9 publication-title: Surg Oncol Clin N Am doi: 10.1016/j.soc.2017.11.011 – volume: 69 start-page: 7 issue: 1 year: 2019 ident: 2733_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21551 – volume: 44 start-page: 3625 issue: 11 year: 2019 ident: 2733_CR17 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02240-8 – volume: 29 start-page: 196 issue: 3 year: 2016 ident: 2733_CR29 publication-title: Clin Colon Rectal Surg doi: 10.1055/s-0036-1584289 – volume: 20 start-page: O248 issue: 9 year: 2018 ident: 2733_CR13 publication-title: Colorectal Dis doi: 10.1111/codi.14289 – ident: 2733_CR14 doi: 10.1016/j.ejca.2017.05.027 – volume: 5 start-page: 4006 year: 2014 ident: 2733_CR20 publication-title: Nat Commun doi: 10.1038/ncomms5006 – ident: 2733_CR5 – volume: 34 start-page: 2157 issue: 18 year: 2016 ident: 2733_CR22 publication-title: J Clin Oncol doi: 10.1200/jco.2015.65.9128 |
SSID | ssj0001651125 ssj0008379 |
Score | 2.499024 |
Snippet | Purpose
To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs)... To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in... PurposeTo establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs)... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 873 |
SubjectTerms | Cancer Colorectal cancer Confidence intervals Feature extraction Gastroenterology Hepatology High resolution Image resolution Image segmentation Imaging Lymph nodes Lymphatic system Magnetic resonance imaging Medicine Medicine & Public Health Metastases Metastasis Nomograms Performance prediction Radiology Radiomics Rectum Risk analysis Risk factors Sensitivity Special Section: Rectal Cancer Training Tumors |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hrYS4QHkHCjISN3CVJrHjPVZVSwEtB8RKyynyYyJV3SZVNivRHvrbGXudUCgg9Rhl7DjOOPN9nocB3kpty0y5kkudW16QReY61Y4biVajszWGAqazL_J4XnxaiEVMClsN0e6DSzL8qcdkt0AXuKc7vgZLzgk5bhH-SIsJbO1_-P752t6K9DBChHPlJBHmtFjEfJm_d_S7TboBNG84SYPtOXoA82HUm5CT0911b3bt5R8FHW_7WttwP4JRtr_RnodwB5tHcHcW3e2P4cpHgXAi5FE_2ezrR-7tnmOddic-oXnFdCxrwvqWnXe-bc-WF6QkrGkdsjPsNSFQL6Abx_r1WdsxhyFYbMWo75jqubxgJw3z_18akfW62D2B-dHht4NjHg9s4DYvRc-DUzG1tkSCWUIIXShdE2eyZk_VU2tSqUqbS6WNK1JrUKZmilmtMa_pQun8KUyatsHnwFARvZW61DarC5mh0io3BlGI2oPaOoG94ZNVNlYz94dqLKuxDnOY2IomtgoTW_1I4N3Y5nxTy-O_0juDJlRxXa8qIquqnPqdnwTejLdpRXo3i26wXXuZwlfYyUWZwLONBo2Py7MpMWghEng_aMOvzv89lhe3E38J9zIfehNC5XZg0ndrfEXYqTev41L5Cf0CET8 priority: 102 providerName: Springer Nature |
Title | High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer |
URI | https://link.springer.com/article/10.1007/s00261-020-02733-x https://www.ncbi.nlm.nih.gov/pubmed/32940755 https://www.proquest.com/docview/2498796194 https://www.proquest.com/docview/2443880357 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZbC2MvY_e564oGe9vEXMuSlaeSlKTdRsIoC2RPRjdDIbVTx4H2Zb995yiKyyjri4XRxcJHl_PpnPOJkE9S2yJTrmBSc8ty2JGZTrVjRnqrvbOVDwSm05k8n-ffF2IRD9zW0a1ytyaGhdo1Fs_IvwJMUMUAMffJ6prhrVFoXY1XaDwm-0hdhi5dxaIHXKBdBK69jEtAzWm-iEEzIXQugA-G4AkZXTi7-Xdjuqdt3rOUhg1o8pw8i5ojHW5F_YI88vVL8mQabeOvyB902WCAnuNgotOLbww3KUdb7S4x-nhNdeQgoV1DVy3W7ejyFiRK68Z5euU7DeoiFtC1o93mqmmp88Gza02h7RiXubyllzXFxRJ6ZHHgtK_JfDL-dXrO4u0KzPJCdCxYAFNrCw86kRBC50pXAHCsOVbVwJpUqsJyqbRxeWqNl6kZ-KzSnlfwojR_Q_bqpvbvCPUKsKjUhbZZlcvMK624Md4LUaEGWiXkePdrSxupx_EGjGXZkyYHcZQgjjKIo7xJyOe-zmpLvPFg6cOdxMo4Cdfl3ZBJyMc-G6YP2kR07ZsNlsmRDoeLIiFvt5LuP8ezAcBdIRLyZSf6u8b_35eDh_vynjzN0C8m-LEdkr2u3fgPoNh05iiMXniqydkR2R9ORqMZpme_f4whHY1nPy8gd54N_wJJKfy_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXVN5pCxgJTmCRxrHjHCqEgGWXdntArbS34NiOVGmbbLNZ0b30J_Eb8TiPClX01mMU27E8D8-XeQG8FUonkTQJFYppGrsbmapQGZoLq5U1urC-gOn0SIxP4h8zPtuAP30uDIZV9jrRK2pTafxH_tHBBJmkiLk_Lc4pdo1C72rfQqNliwO7_u0g23J_8tXR910Ujb4dfxnTrqsA1SzhDfWer1DrxDpbgHOuYqkKZ9jrfE8Wqc5DIRPNhFS5iUOdWxHmqY0KZVnhHqRibt07cDdmLEWJkqPvg-aXbW2_iAmH0sN41iXp-FQ9D3YogjWsIMPoxb8X4TXr9ppn1l94oy142Fmq5HPLWo9gw5aP4d6088U_gUsMEaEOrXfMS6Y_JxQvRUNqZU4x23lJVFfzhDQVWdQ4tyHzteMgUlbGkjPbKGee4gBVGtKszqqaGOsjyZbErd3lgc7X5LQkqJzdjjQyav0UTm7l3J_BZlmV9gUQKx32FSpROipiEVmpJMtzazkv0OItAtjrjzbTXalz7Lgxz4YizZ4cmSNH5smRXQTwfpizaAt93Dh6t6dY1gn9Mrti0QDeDK-duKIPRpW2WuGYGMvvMJ4E8Lyl9PA5FqUOXnMewIee9FeL_38v2zfv5TXcHx9PD7PDydHBDjyIMCbHx9DtwmZTr-xLZ1Q1-SvPyQR-3bbo_AWBfTQl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZe0LiHDTASPIG1NI4vfUAIMaqV0QkhJvUtOLYjTeqS0qZifeGH8es4x3UyoYm97TGK7Vg-F58v50bIK2msyrRTTBpuWQ43MjOpcayU3hrvbOVDAdPJiTw6zT9PxXSL_OlyYTCsstOJQVG7xuI_8gOACVoNEXMfVDEs4uvh6P38J8MOUuhp7dppbFjk2K9_AXxbvhsfAq1fZ9no0_ePRyx2GGCWK9Gy4AVLrVUe7AIhhMm1qcDIt-VAV0NbplIry6U2pctTW3qZlkOfVcbzCh604bDuLXJbcTFAGVPTHuyBZRPq_GVcAmJP82lM2AlpewH4MARuWE2Gs4t_L8Urlu4VL224_Ea75G60WumHDZvdI1u-vk92JtEv_4D8xnARBsg9MjKdfBszvCAdXRh3hpnPS2pi_RPaNnS-wLktna2Bm2jdOE_PfWvAVMUBpna0XZ03C-p8iCpbUlg75oTO1vSspqioYUcWmXbxkJzeyLk_Itt1U_snhHoNOFgaZWxW5TLz2mhelt4LUaH1WyVk0B1tYWPZc-y-MSv6gs2BHAWQowjkKC4S8qafM98U_bh29H5HsSIqgGVxya4Jedm_BtFFf4ypfbPCMTmW4uFCJeTxhtL953g2BKgtRELedqS_XPz_e3l6_V5ekB0QmuLL-OR4j9zJMDwnhNPtk-12sfLPwL5qy-eBkSn5cdOS8xesuDhS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-resolution+MRI-based+radiomics+analysis+to+predict+lymph+node+metastasis+and+tumor+deposits+respectively+in+rectal+cancer&rft.jtitle=Abdominal+radiology+%28New+York%29&rft.au=Yang%2C+Yan-Song&rft.au=Feng%2C+Feng&rft.au=Qiu%2C+Yong-Juan&rft.au=Zheng%2C+Gui-Hua&rft.date=2021-03-01&rft.issn=2366-0058&rft.eissn=2366-0058&rft.volume=46&rft.issue=3&rft.spage=873&rft_id=info:doi/10.1007%2Fs00261-020-02733-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2366-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2366-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2366-004X&client=summon |