High-resolution MRI-based radiomics analysis to predict lymph node metastasis and tumor deposits respectively in rectal cancer
Purpose To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients. Methods A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enro...
Saved in:
Published in | Abdominal imaging Vol. 46; no. 3; pp. 873 - 884 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Purpose
To establish and validate two predictive radiomics models for preoperative prediction of lymph node metastases (LNMs) and tumor deposits (TDs) respectively in rectal cancer (RC) patients.
Methods
A total of 139 RC patients (98 in the training cohort and 41 in the validation cohort) were enrolled in the present study. High-resolution magnetic resonance images (HRMRI) were retrieved for tumor segmentation and feature extraction. HRMRI findings of RC were assessed by three experienced radiologists. Two radiomics nomograms were established by integrating the clinical risk factors, HRMRI findings and radiomics signature.
Results
The predictive nomogram of LNMs showed good predictive performance (area under the curve [AUC], 0.90; 95% confidence interval [CI] 0.83–0.96) which was better than clinico-radiological (AUC, 0.83; 95% CI 0.74–0.93; Delong test,
p
= 0.017) or radiomics signature-only model (AUC, 0.77; 95% CI 0.67–0.86; Delong test,
p
= 0.003) in training cohort. Application of the nomogram in the validation cohort still exhibited good performance (AUC, 0.87; 95% CI 0.76–0.98). The accuracy, sensitivity and specificity of the combined model in predicting LNMs was 0.86,0.79 and 0.91 in training cohort and 0.83,0.85 and 0.82 in validation cohort. As for TDs, the predictive efficacy of the nomogram (AUC, 0.82; 95% CI 0.71–0.93) was not significantly higher than radiomics signature-only model (AUC, 0.80; 95% CI 0.69–0.92; Delong test,
p
= 0.71). Radiomics signature-only model was adopted to predict TDs with accuracy=0.76, sensitivity=0.72 and specificity=0.94 in training cohort and 0.68, 0.62 and 0.97 in validation cohort.
Conclusion
HRMRI-based radiomics models could be helpful for the prediction of LNMs and TDs preoperatively in RC patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2366-004X 2366-0058 2366-0058 |
DOI: | 10.1007/s00261-020-02733-x |