Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium
To investigate the role played by filopodia in the motility and chemotaxis of amoeboid cells, a computer-assisted 3D reconstruction and motion analysis system, DIAS 4.0, has been developed. Reconstruction at short time intervals of Dictyostelium amoebae migrating in buffer or in response to chemotac...
Saved in:
Published in | Journal of cell science Vol. 118; no. 10; pp. 2225 - 2237 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
15.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To investigate the role played by filopodia in the motility and chemotaxis of amoeboid cells, a computer-assisted 3D reconstruction and motion analysis system, DIAS 4.0, has been developed. Reconstruction at short time intervals of Dictyostelium amoebae migrating in buffer or in response to chemotactic signals, revealed that the great majority of filopodia form on pseudopodia, not on the cell body; that filopodia on the cell body originate primarily on pseudopodia and relocate; and that filopodia on the uropod are longer and more stable than those located on other portions of the cell. When adjusting direction through lateral pseudopod formation in a spatial gradient of chemoattractant, the temporal and spatial dynamics of lateral pseudopodia suggest that filopodia may be involved in stabilizing pseudopodia on the substratum while the decision is being made by a cell either to turn into a pseudopodium formed in the correct direction (up the gradient) or to retract a pseudopodium formed in the wrong direction (down the gradient). Experiments in which amoebae were treated with high concentrations of chemoattractant further revealed that receptor occupancy plays a role both in filopod formation and retraction. As phosphorylation-dephosphorylation of myosin II heavy chain (MHC) plays a role in lateral pseudopod formation, turning and chemotaxis, the temporal and spatial dynamics of filopod formation were analyzed in MHC phosphorylation mutants. These studies revealed that MHC phosphorylation-dephosphorylation plays a role in the regulation of filopod formation during cell migration in buffer and during chemotaxis. The computer-assisted technology described here for reconstructing filopodia at short time intervals in living cells, therefore provides a new tool for investigating the role filopodia play in the motility and chemotaxis of amoeboid cells. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.02342 |