The Global Kernel k-Means Algorithm for Clustering in Feature Space

Kernel k-means is an extension of the standard k-means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 20; no. 7; pp. 1181 - 1194
Main Authors Tzortzis, G.F., Likas, A.C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2009
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Kernel k-means is an extension of the standard k-means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k-means with random restarts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1045-9227
1941-0093
DOI:10.1109/TNN.2009.2019722