Production and Biological Effects of Extracellular Vesicles from Adipose-Derived Stem Cells Were Markedly Increased by Low-Intensity Ultrasound Stimulation for Promoting Diabetic Wound Healing

Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insuffi...

Full description

Saved in:
Bibliographic Details
Published inStem cell reviews and reports Vol. 19; no. 3; pp. 784 - 806
Main Authors Zheng, Yi, Xu, Peng, Pan, Chuqiao, Wang, Yikai, Liu, Zibo, Chen, Yahong, Chen, Chuhsin, Fu, Shibo, Xue, Ke, Zhou, Qimin, Liu, Kai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insufficient to meet the demands of clinical therapy. In this study, a novel method involving the use of low-intensity ultrasound stimulation on ADSCs is developed to promote EV secretion for clinical use. A proper low-intensity ultrasound stimulation parameter which significantly increases ADSC-EV quantity has been found. In addition, EVs secreted by ADSCs following low-intensity ultrasound stimulation (US-EVs) are enriched in wound healing-related miRNAs. Moreover, US-EVs promote the biological functions of fibroblasts, keratinocytes, and endothelial cells in vitro, and promote diabetic wound healing in db/db mice in vivo through re-epithelialization, collagen production, cell proliferation, keratinocyte differentiation and migration, and angiogenesis. This study proposes low-intensity ultrasound stimulation as a new method for promoting significant EV secretion by ADSCs and for improving the diabetic wound-healing potential of EVs, which will meet the clinical needs for these nanoparticles. Graphical Abstract The production of extracellular vesicles of adipose-derived stem cells is obviously promoted by a low-intensity ultrasound stimulation method, and the biological effects of promoting diabetic wound healing were markedly increased in vitro and in vivo
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2629-3269
2629-3277
DOI:10.1007/s12015-022-10487-w