Warming/cooling effect of cropland expansion during the 1900s ~ 2010s in the Heilongjiang Province, Northeast of China

Land cover change (LCC) significantly changed the local/regional temperature. This paper attempts to reveal the effects of cropland expansion in different ways on temperature change from the 1900s to 2010s in Heilongjiang Province. To reach this goal, we conducted four simulation research schemes wi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biometeorology Vol. 66; no. 7; pp. 1379 - 1390
Main Authors Jiang, Lanqi, Zhang, Hongwen, Zhao, Fang, Zhang, Lijuan, Wang, Xiaodi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Land cover change (LCC) significantly changed the local/regional temperature. This paper attempts to reveal the effects of cropland expansion in different ways on temperature change from the 1900s to 2010s in Heilongjiang Province. To reach this goal, we conducted four simulation research schemes with the coupled Weather Research and Forecast (WRF)-Noah model to investigate the warming/cooling effect of cropland expansion. The results show that cropland expansion exerted different effects with different land-use type conversions. In the last century, the areas with grassland-to-cropland and wetland-to-cropland transition show the warming effect, and the average surface temperature in Heilongjiang Province increased by 0.023 ℃ and 0.024 ℃, respectively. The areas with forest-to-cropland transition show the cooling effect, in which the average temperature decreased by 0.103 ℃. The variation of air temperature is mainly caused by the variation of surface reflectance and surface net radiation flux. The results provide evidence that cropland expansion changes to biophysical landscape characteristics, warming/cooling the land surface and thus enhancing/reducing the temperature, and lead to regional climate change eventually.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7128
1432-1254
DOI:10.1007/s00484-022-02283-5