A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces
Brain computer interfaces (BCI) represent an alternative for patients whose cognitive functions are preserved, but are unable to communicate via conventional means. A commonly used BCI paradigm is based on the detection of event-related potentials, particularly the P300, immersed in the electroencep...
Saved in:
Published in | Medical & biological engineering & computing Vol. 57; no. 12; pp. 2705 - 2715 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brain computer interfaces (BCI) represent an alternative for patients whose cognitive functions are preserved, but are unable to communicate via conventional means. A commonly used BCI paradigm is based on the detection of event-related potentials, particularly the P300, immersed in the electroencephalogram (EEG). In order to transfer laboratory-tested BCIs into systems that can be used by at homes, it is relevant to investigate if it is possible to select a limited set of EEG channels that work for most subjects and across different sessions without a significant decrease in performance. In this work, two strategies for channel selection for a single-trial P300 brain computer interface were evaluated and compared. The first strategy was tailored specifically for each subject, whereas the second strategy aimed at finding a subject-independent set of channels. In both strategies, genetic algorithms (GAs) and recursive feature elimination algorithms were used. The classification stage was performed using a linear discriminant. A dataset of EEG recordings from 18 healthy subjects was used test the proposed configurations. Performance indexes were calculated to evaluate the system. Results showed that a fixed subset of four subject-independent EEG channels selected using GA provided the best compromise between BCI setup and single-trial system performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0140-0118 1741-0444 1741-0444 |
DOI: | 10.1007/s11517-019-02065-z |