Complete Genome Sequence and Carbohydrates-Active EnZymes (CAZymes) Analysis of Lactobacillus paracasei DTA72, a Potential Probiotic Strain with Strong Capability to Use Inulin

The whole genome sequence of Lactobacillus paracasei DTA72, isolated from healthy infant feces, is reported, along with the Carbohydrates-Active enZymes (CAZymes) analysis and an in silico safety assessment. Strain DTA72 had previously demonstrated some interesting potential probiotic features, such...

Full description

Saved in:
Bibliographic Details
Published inCurrent microbiology Vol. 77; no. 10; pp. 2867 - 2875
Main Authors Tarrah, Armin, Pakroo, Shadi, Lemos Junior, Wilson José Fernandes, Guerra, Andre Fioravante, Corich, Viviana, Giacomini, Alessio
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The whole genome sequence of Lactobacillus paracasei DTA72, isolated from healthy infant feces, is reported, along with the Carbohydrates-Active enZymes (CAZymes) analysis and an in silico safety assessment. Strain DTA72 had previously demonstrated some interesting potential probiotic features, such as a good resistance to gastrointestinal conditions and an anti- Listeria activity. The 3.1 Mb sequenced genome consists of 3116 protein-coding sequences distributed on 340 SEED subsystems. In the present study, we analyzed the fermentation capability of strain DTA72 on six different carbohydrate sources, namely, glucose, fructose, lactose, galactose, xylose, and inulin by using phenotypical and genomic approaches. Interestingly, L . paracasei DTA72 evidenced the best growth performances on inulin with a much shorter lag phase and higher number of cells at the stationary phase in comparison with all the sugars tested. The CAZyme analysis using the predicted amino acid sequences detected 80 enzymes, distributed into the five CAZymes classes. Moreover, the in silico analysis revealed the absence of blood hemolytic genes, transmissible antibiotic resistances, and plasmids in DTA72. The results described in this study, together with those previously reported and particularly the strong capability to utilize inulin as energy source, make DTA72 a very interesting potential probiotic strain to be considered for the production of synbiotic foods. The complete genome data have been deposited in GenBank under the accession number WUJH00000000.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0343-8651
1432-0991
DOI:10.1007/s00284-020-02089-x