Human β-NGF gene transferred to cat corneal endothelial cells

AIM: To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS: The endothelium of cat cornea was torn under th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of ophthalmology Vol. 9; no. 7; pp. 937 - 942
Main Authors Luo, Wen-Juan, Liu, Min, Zhao, Gui-Qiu, Wang, Chuan-Fu, Hu, Li-Ting, Liu, Xiang-Ping
Format Journal Article
LanguageEnglish
Published China International Journal of Ophthalmology Press 18.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:AIM: To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS: The endothelium of cat cornea was torn under the microscope and rapidly cultivated in Dulbecco's modified Eagle's medium (DMEM) to form single layer CECs and the passage 2 endothelial cells were used in this experiment. The recombinant human AAV-β-NGF was constructed. The recombinant human AAV-β-NGF was transferred into cat CECs directly. Three groups were as following: normal CEC control group, CEC-AAV control group and recombinant CEC- AAV-β-NGF group. Forty-eight hours after transfection, the total RNA was extracted from the CEC by Trizol. The expression of the β-NGF target gene detected by fluorescence quantitative polymerase chain reaction; proliferation activity of the transfected CEC detected at 48h by MTT assay; the percentage of G1 cells among CECs after transfect was detected by flow cytometry method (FCM); cell morphology was observed under inverted phase contrast microscope. RESULTS: The torn endothelium culture technique rapidly cultivated single layer cat corneal endothelial cells. The self-designed primers for the target gene and reference gene were efficient and special confirmed through electrophoresis analysis and DNA sequencing. Forty-eight hours after transfect, the human β-NGF gene mRNA detected by fluorescence quantitative polymerase chain reaction showed that there was no significant difference between normal CEC control group and CEC-AAV control group (P〉0.05); there was significant difference between two control groups and recombinant CEC-AAV-β-NGF group (P〈0.05). MTT assay showed that transfect of recombinant AAV-β-NGF promoted the proliferation activity of cat CEC, while there was no significant difference between normal CEC control group and CEC-AAV control group (P〉0.05). FCM result showed that the percentage of Glcells in CEC- AAV-NGF group was 76.8% while that in normal CEC control group and CEC-AAV control group was 46.6% and 49.8%. CONCLUSION: Recombinant AAV-β-NGF promotes proliferation in cat CECs by expressing bioactive β-NGF protein in high efficiency and suggests that its modulation can be used to treat vision loss secondary to corneal endothelial dysfunction.
Bibliography:AIM: To transfect the cat corneal endothelial cells (CECs) with recombinant human β-nerve growth factor gene adeno-associated virus (AAV-β-NGF) and to observe the effect of the expressed β-NGF protein on the proliferation activity of cat CECs. METHODS: The endothelium of cat cornea was torn under the microscope and rapidly cultivated in Dulbecco's modified Eagle's medium (DMEM) to form single layer CECs and the passage 2 endothelial cells were used in this experiment. The recombinant human AAV-β-NGF was constructed. The recombinant human AAV-β-NGF was transferred into cat CECs directly. Three groups were as following: normal CEC control group, CEC-AAV control group and recombinant CEC- AAV-β-NGF group. Forty-eight hours after transfection, the total RNA was extracted from the CEC by Trizol. The expression of the β-NGF target gene detected by fluorescence quantitative polymerase chain reaction; proliferation activity of the transfected CEC detected at 48h by MTT assay; the percentage of G1 cells among CECs after transfect was detected by flow cytometry method (FCM); cell morphology was observed under inverted phase contrast microscope. RESULTS: The torn endothelium culture technique rapidly cultivated single layer cat corneal endothelial cells. The self-designed primers for the target gene and reference gene were efficient and special confirmed through electrophoresis analysis and DNA sequencing. Forty-eight hours after transfect, the human β-NGF gene mRNA detected by fluorescence quantitative polymerase chain reaction showed that there was no significant difference between normal CEC control group and CEC-AAV control group (P〉0.05); there was significant difference between two control groups and recombinant CEC-AAV-β-NGF group (P〈0.05). MTT assay showed that transfect of recombinant AAV-β-NGF promoted the proliferation activity of cat CEC, while there was no significant difference between normal CEC control group and CEC-AAV control group (P〉0.05). FCM result showed that the percentage of Glcells in CEC- AAV-NGF group was 76.8% while that in normal CEC control group and CEC-AAV control group was 46.6% and 49.8%. CONCLUSION: Recombinant AAV-β-NGF promotes proliferation in cat CECs by expressing bioactive β-NGF protein in high efficiency and suggests that its modulation can be used to treat vision loss secondary to corneal endothelial dysfunction.
nerve growth factor; corneal endothelialcell; transfect; proliferation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2222-3959
2227-4898
DOI:10.18240/ijo.2016.07.01