Thermal hydraulic calculation in a passive residual heat removal system of the SMART-P plant for forced and natural convection conditions

An investigation of the thermal hydraulic characteristics in the passive residual heat removal system of the System integrated Modular Advanced ReacTor-P (SMART-P) has been carried out using the MARS code, which is a best estimate system analysis code. The SMART-P is designed to cool the system duri...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and design Vol. 232; no. 3; pp. 277 - 288
Main Authors Chung, Young-Jong, Yang, Soo-Hyong, Kim, Hee-Cheol, Zee, Sung-Quun
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2004
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An investigation of the thermal hydraulic characteristics in the passive residual heat removal system of the System integrated Modular Advanced ReacTor-P (SMART-P) has been carried out using the MARS code, which is a best estimate system analysis code. The SMART-P is designed to cool the system during accidental conditions by a natural convection. The dominant heat transfer in the steam generator is a boiling mode under a forced convection condition, and it is a single-phase liquid and a boiling heat transfer under a natural convection condition. Most of the heat is removed in the heat exchanger of the passive residual heat removal system by a condensation heat transfer. The passive residual heat removal system can remove the energy from the primary side as long as the heat exchanger is submerged in the refueling water tank. The mass flow is stable under a natural circulation condition though it oscillates periodically with a small amplitude. The parameter study is performed by considering the effects of an effective height between the steam generator and the heat exchanger, a hydraulic resistance, an initial pressure, a non-condensable gas fraction in the compensating tank, and a valve actuation time, which are useful for the design of the passive residual heat removal system. The mass flow in the passive residual heat removal system has been affected by the height between the steam generator and the heat exchanger, and the hydraulic resistance of the loop.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0029-5493
1872-759X
DOI:10.1016/j.nucengdes.2004.07.002