A comparison between models of gravity induced decoherence of the wavefunction
It has already been suggested that quantum theory needs to be reformulated or modified in order to explain the measurement process and the successive collapse of the wave- function. However, there are also models of another type which keep quantum theory intact and instead modify the classical gravi...
Saved in:
Published in | Journal of physics. Conference series Vol. 626; no. 1; pp. 12040 - 12047 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
03.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It has already been suggested that quantum theory needs to be reformulated or modified in order to explain the measurement process and the successive collapse of the wave- function. However, there are also models of another type which keep quantum theory intact and instead modify the classical gravity by introducing stochasticity to it. These models suggest that there is a fluctuation in the background gravitational field which eventually results in the decoherence of the wavefunction. These fluctuations limit the precision with which one can measure the properties of a spacetime geometry with a quantum probe. Two similar models along this line have been suggested by Karolyhazy (K-model) and Diósi(D-model). They are based upon apparently different spacetime bounds. The results obtained for the coherence length are also somewhat different. In this article, we show that, given certain conditions apply, the minimal spacetime bounds in these two models are equivalent. We also derive the two-point correlation for the fluctuation potential in K-model which turns out to be non-white, unlike in D-model, where the corresponding correlation is white noise in time. In our opinion, this is the origin of discrepancy in the predictions of the two models. We argue that the noise correlation cannot be determined uniquely from a given spacetime bound. |
---|---|
ISSN: | 1742-6588 1742-6596 1742-6596 |
DOI: | 10.1088/1742-6596/626/1/012040 |