Effects of basicity and MgO content on the viscosity of the SiO2-CaO-MgO-9wt%Al2O3 slag system

The effects of basicity and MgO content on the viscosity of SiO2-CaO-MgO-9wt%Al2O3 slags with basicity from 0.4 to 1.0 and MgO content from 13wt%to 19wt%were investigated using the rotating cylinder method. A correlation between the viscosity and the slag structure was determined by Fourier transfor...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 21; no. 4; pp. 353 - 362
Main Authors Gao, Yun-ming, Wang, Shao-bo, Hong, Chuan, Ma, Xiu-juan, Yang, Fu
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.04.2014
Springer Nature B.V
Key Laboratory for Ferrous Metal urgy and Resources Utilization of the Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of basicity and MgO content on the viscosity of SiO2-CaO-MgO-9wt%Al2O3 slags with basicity from 0.4 to 1.0 and MgO content from 13wt%to 19wt%were investigated using the rotating cylinder method. A correlation between the viscosity and the slag structure was determined by Fourier transform infrared (FTIR) spectroscopy. It is indicated that the complex network structure of the slag melt is depolymerized into simpler network units with increasing basicity or MgO content, resulting in a continuous decrease in viscosity of the slag. The viscosity is strongly dependent on the combined action of basic oxide components in the slag. Under the present experimental conditions, increasing the basicity is found to be more effective than increasing the MgO content in decreasing the viscosity of the slag. At higher temperatures, the increase of basicity or MgO content does not appreciably decrease the viscosity of the slag, as it does at lower tem-peratures. The calculated activation energy of viscous flow is between 154 and 200 kJ·mol-1, which decreases with an increase in basicity from 0.4 to 1.0 at a fixed MgO content in the range of 13wt%to 19wt%.
Bibliography:The effects of basicity and MgO content on the viscosity of SiO2-CaO-MgO-9wt%Al2O3 slags with basicity from 0.4 to 1.0 and MgO content from 13wt%to 19wt%were investigated using the rotating cylinder method. A correlation between the viscosity and the slag structure was determined by Fourier transform infrared (FTIR) spectroscopy. It is indicated that the complex network structure of the slag melt is depolymerized into simpler network units with increasing basicity or MgO content, resulting in a continuous decrease in viscosity of the slag. The viscosity is strongly dependent on the combined action of basic oxide components in the slag. Under the present experimental conditions, increasing the basicity is found to be more effective than increasing the MgO content in decreasing the viscosity of the slag. At higher temperatures, the increase of basicity or MgO content does not appreciably decrease the viscosity of the slag, as it does at lower tem-peratures. The calculated activation energy of viscous flow is between 154 and 200 kJ·mol-1, which decreases with an increase in basicity from 0.4 to 1.0 at a fixed MgO content in the range of 13wt%to 19wt%.
Yun-ming Gao, Shao-bo Wang, Chuan Hong, Xiu-juan Ma, and Fu Yang(Key Laboratory for Ferrous Metal urgy and Resources Utilization of the Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China)
slags; viscosity; basicity; magnesia; activation energy; Fourier transform infrared spectroscopy
11-5787/T
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-014-0916-7