Rigid body water impact–experimental tests and numerical simulations using the SPH method

Statistics show that water impact of an aircraft in emergency is likely to have tragic consequences and therefore new researches on this topic are recommendable. In 2005, the GARTEUR AG15 was established to improve the SPH method for application to helicopter ditching. As a contribution, water impac...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 38; no. 4; pp. 141 - 151
Main Authors Anghileri, Marco, Castelletti, Luigi-Maria L., Francesconi, Edoardo, Milanese, Andrea, Pittofrati, Michele
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Statistics show that water impact of an aircraft in emergency is likely to have tragic consequences and therefore new researches on this topic are recommendable. In 2005, the GARTEUR AG15 was established to improve the SPH method for application to helicopter ditching. As a contribution, water impact drop tests using rigid bodies were performed at the Politecnico di Milano LAST Crash Lab to collect data and validate the numerical models. During the tests, impact decelerations were measured and suitably pressure transducers were developed to measure the impact pressures. Numerical simulations were carried out by adopting the SPH method to model the fluid region. A close experimental–numerical correlation was obtained. Findings are reported and guidelines for further investigations are proposed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2010.11.002