Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed (24 h) to media containing leupeptin (0-10 mM), E 64 (0-10 mM), or chloroquine (0-...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of physiology Vol. 257; no. 6 Pt 1; p. C1069
Main Authors Samarel, A M, Ferguson, A G, Decker, R S, Lesch, M
Format Journal Article
LanguageEnglish
Published United States 01.12.1989
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed (24 h) to media containing leupeptin (0-10 mM), E 64 (0-10 mM), or chloroquine (0-50 microM). Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D (Mr 53,000) within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D (Mr 48,000). Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate (not detectable in control fibroblasts). Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation.
ISSN:0002-9513
DOI:10.1152/ajpcell.1989.257.6.c1069