Antifouling digital microfluidics using lubricant infused porous film

Electrowetting-driven digital (droplet-based) microfluidics has a tremendous impact on lab-on-a-chip applications. However, the biofouling problem impedes the real applications of such digital microfluidics. Here we report antifouling digital microfluidics by introducing lubricant infused porous fil...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 19; no. 13; pp. 2275 - 2283
Main Authors Geng, Hongyao, Cho, Sung Kwon
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 25.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrowetting-driven digital (droplet-based) microfluidics has a tremendous impact on lab-on-a-chip applications. However, the biofouling problem impedes the real applications of such digital microfluidics. Here we report antifouling digital microfluidics by introducing lubricant infused porous film to electrowetting (more exactly, electrowetting on dielectric or EWOD). Such film minimizes direct contact between droplets and the solid surface but provides liquid-liquid contact between droplets and the lubricant liquid, which thus prevents unspecific adsorption of biomolecules to the solid surface. We demonstrate the compatibility of the lubricant infused film with EWOD to transport bio droplets. This configuration shows robust and high performance even for long cyclic operations without fouling in a wide range of concentrations of protein solutions. In addition, a variety of conductive droplets, including deionized (DI) water, saline, protein solution, DNA solution, sheep blood, milk, ionic liquid and honey, are examined, similarly showing high performance in cyclic transportations. In addition, using the same electrode patterns used in EWOD, transportations of dielectric (non-conductive) droplets including light crude oil, propylene carbonate and alcohol are also achieved. Such capability of droplet handling without fouling will certainly benefit the practical applications of digital microfluidics in droplet handling, sampling, reaction, diagnosis in clinic medicine, biotechnology and chemistry fields. We report antifouling digital microfluidics by introducing a lubricant infused porous film to electrowetting, showing high performance and robustness even in long cyclic operations without fouling for a variety of bio-solutions.
Bibliography:10.1039/c9lc00289h
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-0197
1473-0189
DOI:10.1039/c9lc00289h