LINAC5 - A Quasi-Alvarez Linac for BioLEIR

LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the lengt...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 874; no. 1; pp. 12057 - 12062
Main Authors Garland, J M, Lallement, J-B, Lombardi, A
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/874/1/012057