On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature
•Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism. A comprehensive analysis of the...
Saved in:
Published in | Solid-state electronics Vol. 170; p. 107820 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism.
A comprehensive analysis of the MOSFET subthreshold swing for a 2D subband with exponential band tail of states is first proposed. Then, a compact analytical expression for the subthreshold swing as a function of temperature is derived, well accounting for both its cryogenic temperature saturation and classical higher temperature increase. Moreover, a generalized subthreshold swing calculation applicable to the situation where the MOSFET drain current should be evaluated from the conductivity function within the Kubo-Greenwood formalism is developed. |
---|---|
AbstractList | •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism.
A comprehensive analysis of the MOSFET subthreshold swing for a 2D subband with exponential band tail of states is first proposed. Then, a compact analytical expression for the subthreshold swing as a function of temperature is derived, well accounting for both its cryogenic temperature saturation and classical higher temperature increase. Moreover, a generalized subthreshold swing calculation applicable to the situation where the MOSFET drain current should be evaluated from the conductivity function within the Kubo-Greenwood formalism is developed. |
ArticleNumber | 107820 |
Author | Martinie, S. Aouad, M. Poiroux, T. Balestra, F. Ghibaudo, G. Casse, M. |
Author_xml | – sequence: 1 givenname: G. surname: Ghibaudo fullname: Ghibaudo, G. email: gerard.ghibaudo@grenoble-inp.fr organization: IMEP-LAHC, Université Grenoble Alpes, MINATEC/INPG, 38016 Grenoble, France – sequence: 2 givenname: M. surname: Aouad fullname: Aouad, M. organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France – sequence: 3 givenname: M. surname: Casse fullname: Casse, M. organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France – sequence: 4 givenname: S. surname: Martinie fullname: Martinie, S. organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France – sequence: 5 givenname: T. surname: Poiroux fullname: Poiroux, T. organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France – sequence: 6 givenname: F. surname: Balestra fullname: Balestra, F. organization: IMEP-LAHC, Université Grenoble Alpes, MINATEC/INPG, 38016 Grenoble, France |
BackLink | https://hal.science/hal-03368147$$DView record in HAL |
BookMark | eNp9kMFKAzEQhoNUsFUfwFuuHrZONrubLZ5E1AqVHtRziMmsTdkmJYmWvr0bKiIePA2Z-b8f8k3IyHmHhFwwmDJgzdV6GiNOSyjzW7QlHJExa8WsKCuoR2QMwNuCDdETMolxDQBlw2BM7NLRtEK68Qb73rp36juacLPFoNJHQGpwi86g05gv8eMtrQLGle8Njbuct44-LZ_v714iNX43tHmqw96_o7P6d9MZOe5UH_H8e56S1wG6nReL5cPj7c2i0FxUqahhhh1XjAmumlYrqGuATrDGlKqpNeNYYS3yRTS8NJ1562YVNAoNYDtrGT8ll4felerlNtiNCnvplZXzm4XMO-C8aVklPnOWHbI6-BgDdj8AA5m9yrUcvMrsVR68Doz4w2ibVLLepaBs_y95fSBx-P6nxSCjttmssQF1ksbbf-gvlrqUwA |
CitedBy_id | crossref_primary_10_1109_TED_2020_3022607 crossref_primary_10_1002_pssa_202300069 crossref_primary_10_1016_j_sse_2022_108343 crossref_primary_10_1016_j_sse_2022_108263 crossref_primary_10_1109_LED_2022_3185781 crossref_primary_10_1016_j_sse_2020_107949 crossref_primary_10_3390_mi14020386 crossref_primary_10_1016_j_sse_2022_108448 crossref_primary_10_1109_TED_2020_3021999 crossref_primary_10_1109_TED_2024_3499934 crossref_primary_10_1021_acs_nanolett_1c04971 crossref_primary_10_1016_j_sse_2022_108291 crossref_primary_10_1007_s11664_021_09419_0 crossref_primary_10_1016_j_sse_2021_108071 crossref_primary_10_1109_LED_2022_3217314 crossref_primary_10_1016_j_sse_2022_108271 crossref_primary_10_1016_j_sse_2021_108175 crossref_primary_10_1021_acs_nanolett_4c02463 crossref_primary_10_1063_5_0223576 crossref_primary_10_1109_LED_2022_3158495 crossref_primary_10_1016_j_sse_2023_108733 crossref_primary_10_1063_5_0233899 crossref_primary_10_1109_TED_2024_3369576 crossref_primary_10_1016_j_sse_2024_109029 crossref_primary_10_1016_j_sse_2023_108637 crossref_primary_10_1007_s42835_022_01169_1 crossref_primary_10_1007_s11051_023_05793_4 crossref_primary_10_1109_LED_2023_3331022 crossref_primary_10_1109_TED_2024_3419783 crossref_primary_10_1109_TED_2023_3283941 crossref_primary_10_1109_TNANO_2023_3314811 crossref_primary_10_1109_JEDS_2023_3327560 crossref_primary_10_1063_5_0037432 crossref_primary_10_1109_TED_2022_3183556 crossref_primary_10_1149_2162_8777_acb96b crossref_primary_10_1016_j_mejo_2023_105880 crossref_primary_10_1007_s42341_024_00543_2 |
Cites_doi | 10.1109/JEDS.2018.2821763 10.1063/1.1655369 10.1088/0022-3719/19/5/015 10.1038/ncomms13575 10.1088/0022-3719/20/29/003 10.1103/PhysRevApplied.3.024010 10.1103/PhysRevB.30.4493 10.1016/j.sse.2019.03.033 10.1016/0038-1101(82)90052-1 10.1109/JEDS.2018.2817458 10.1007/s10909-012-0461-6 10.1109/LED.2019.2903111 10.1109/LED.2019.2963379 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.sse.2020.107820 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2405 |
ExternalDocumentID | oai_HAL_hal_03368147v1 10_1016_j_sse_2020_107820 S0038110120300812 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TAE TN5 WH7 WUQ XFK XSW ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c374t-509ef3a1173a68ca05500f716d2a65c13e4e5768ca7632dfdbf9406aed0e89813 |
IEDL.DBID | .~1 |
ISSN | 0038-1101 |
IngestDate | Fri May 09 12:13:45 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Tue Jul 01 00:43:52 EDT 2025 Fri Feb 23 02:47:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Model MOSFET Cryogenic temperature Subthreshold swing |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-509ef3a1173a68ca05500f716d2a65c13e4e5768ca7632dfdbf9406aed0e89813 |
ORCID | 0000-0002-9641-9652 0000-0001-9901-0679 |
OpenAccessLink | https://hal.science/hal-03368147 |
ParticipantIDs | hal_primary_oai_HAL_hal_03368147v1 crossref_primary_10_1016_j_sse_2020_107820 crossref_citationtrail_10_1016_j_sse_2020_107820 elsevier_sciencedirect_doi_10_1016_j_sse_2020_107820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Solid-state electronics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Beckers, Jazaeri, Bohuslavskyi, Hutin, De Franceschi, Enz (b0035) 2019; 159 Arnold (b0060) 1974; 25 Dugdale (b0080) 1977 Maurand, Jehl, Kotekar-Patil, Corna, Bohuslavskyi, Lavieville (b0045) 2016; 7 Gutierrez-D, Deen, Claeys (b0010) 2000 Hornibrook (b0040) 2015; 3 Bohuslavskyi, Jansen, Barraud, Barral, Casśe, Le Guevel (b0050) 2019; 40 Ghibaudo (b0070) 1986; 19 Ghibaudo (b0085) 1987; 20 Wada, Nagata, Ikeda, Arai, Ohno, Nagase (b0020) 2012; 167 Beckers, Jazaeri, Enz (b0055) 2020; 41 Incandela, Song, Homulle, Charbon, Vladimirescu, Sebastiano (b0025) 2018; 6 Mott, Davis (b0065) 1979 Cohen, Economou, Soukoulis (b0075) 1984; 30 Kamgar (b0005) 1982; 25 Balestra, Ghibaudo (b0015) 2001 Beckers, Jazaeri, Enz (b0030) 2018; 6 Maurand (10.1016/j.sse.2020.107820_b0045) 2016; 7 Balestra (10.1016/j.sse.2020.107820_b0015) 2001 Mott (10.1016/j.sse.2020.107820_b0065) 1979 Kamgar (10.1016/j.sse.2020.107820_b0005) 1982; 25 Ghibaudo (10.1016/j.sse.2020.107820_b0085) 1987; 20 Beckers (10.1016/j.sse.2020.107820_b0030) 2018; 6 Incandela (10.1016/j.sse.2020.107820_b0025) 2018; 6 Beckers (10.1016/j.sse.2020.107820_b0035) 2019; 159 Beckers (10.1016/j.sse.2020.107820_b0055) 2020; 41 Cohen (10.1016/j.sse.2020.107820_b0075) 1984; 30 Bohuslavskyi (10.1016/j.sse.2020.107820_b0050) 2019; 40 Arnold (10.1016/j.sse.2020.107820_b0060) 1974; 25 Ghibaudo (10.1016/j.sse.2020.107820_b0070) 1986; 19 Dugdale (10.1016/j.sse.2020.107820_b0080) 1977 Hornibrook (10.1016/j.sse.2020.107820_b0040) 2015; 3 Gutierrez-D (10.1016/j.sse.2020.107820_b0010) 2000 Wada (10.1016/j.sse.2020.107820_b0020) 2012; 167 |
References_xml | – volume: 40 start-page: 784 year: 2019 end-page: 787 ident: b0050 article-title: Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening publication-title: IEEE Electron Device Lett – year: 1977 ident: b0080 article-title: The electrical properties of metals and alloys – volume: 6 start-page: 996 year: 2018 end-page: 1006 ident: b0025 article-title: Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures publication-title: IEEE J Electron Devices Soc – year: 1979 ident: b0065 article-title: Electronic processes in non-crystalline materials – volume: 20 start-page: L769 year: 1987 end-page: L773 ident: b0085 article-title: Analysis of the Hall effect in the localised states below the mobility edge publication-title: J Phys C: Solid State Phys – volume: 7 start-page: 13575 year: 2016 ident: b0045 article-title: A CMOS silicon spin qubit publication-title: Nat Commun – volume: 19 start-page: 767 year: 1986 end-page: 780 ident: b0070 article-title: Transport in the inversion layer of a MOS transistor: use of Kubo-Greenwood formalism publication-title: J Phys C: Solid State Phys – year: 2000 ident: b0010 article-title: Low temperature electronics: physics, devices, circuits, and applications – volume: 6 start-page: 1007 year: 2018 end-page: 1018 ident: b0030 article-title: Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K publication-title: IEEE J Electron Devices Soc – volume: 30 start-page: 4493 year: 1984 end-page: 4500 ident: b0075 article-title: Microscopic mobility publication-title: Phys Rev B – volume: 159 start-page: 106 year: 2019 end-page: 115 ident: b0035 article-title: Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures publication-title: Solid-State Electron – volume: 25 start-page: 705 year: 1974 ident: b0060 article-title: Disorder-induced carrier localization in silicon surface inversion layers publication-title: Appl Phys Lett – year: 2001 ident: b0015 article-title: Device and circuit cryogenic operation for low temperature electronics – volume: 3 year: 2015 ident: b0040 article-title: Cryogenic control architecture for large-scale quantum computing publication-title: Phys Rev Appl – volume: 41 start-page: 276 year: 2020 end-page: 279 ident: b0055 article-title: Theoretical limit of low temperature subthreshold swing in field-effect transistors publication-title: IEEE Electron Device Lett – volume: 25 start-page: 537 year: 1982 end-page: 539 ident: b0005 article-title: Subthreshold behavior of silicon MOSFETs at 4.2 K publication-title: Solid-State Electron – volume: 167 start-page: 602 year: 2012 end-page: 608 ident: b0020 article-title: Development of low power cryogenic readout integrated circuits using fully-depleted-silicon-on-insulator CMOS technology for far-infrared image sensors publication-title: J Low Temp Phys – volume: 6 start-page: 996 year: 2018 ident: 10.1016/j.sse.2020.107820_b0025 article-title: Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures publication-title: IEEE J Electron Devices Soc doi: 10.1109/JEDS.2018.2821763 – volume: 25 start-page: 705 year: 1974 ident: 10.1016/j.sse.2020.107820_b0060 article-title: Disorder-induced carrier localization in silicon surface inversion layers publication-title: Appl Phys Lett doi: 10.1063/1.1655369 – volume: 19 start-page: 767 year: 1986 ident: 10.1016/j.sse.2020.107820_b0070 article-title: Transport in the inversion layer of a MOS transistor: use of Kubo-Greenwood formalism publication-title: J Phys C: Solid State Phys doi: 10.1088/0022-3719/19/5/015 – volume: 7 start-page: 13575 year: 2016 ident: 10.1016/j.sse.2020.107820_b0045 article-title: A CMOS silicon spin qubit publication-title: Nat Commun doi: 10.1038/ncomms13575 – volume: 20 start-page: L769 year: 1987 ident: 10.1016/j.sse.2020.107820_b0085 article-title: Analysis of the Hall effect in the localised states below the mobility edge publication-title: J Phys C: Solid State Phys doi: 10.1088/0022-3719/20/29/003 – volume: 3 year: 2015 ident: 10.1016/j.sse.2020.107820_b0040 article-title: Cryogenic control architecture for large-scale quantum computing publication-title: Phys Rev Appl doi: 10.1103/PhysRevApplied.3.024010 – volume: 30 start-page: 4493 year: 1984 ident: 10.1016/j.sse.2020.107820_b0075 article-title: Microscopic mobility publication-title: Phys Rev B doi: 10.1103/PhysRevB.30.4493 – year: 1977 ident: 10.1016/j.sse.2020.107820_b0080 – year: 2000 ident: 10.1016/j.sse.2020.107820_b0010 – volume: 159 start-page: 106 year: 2019 ident: 10.1016/j.sse.2020.107820_b0035 article-title: Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures publication-title: Solid-State Electron doi: 10.1016/j.sse.2019.03.033 – volume: 25 start-page: 537 year: 1982 ident: 10.1016/j.sse.2020.107820_b0005 article-title: Subthreshold behavior of silicon MOSFETs at 4.2 K publication-title: Solid-State Electron doi: 10.1016/0038-1101(82)90052-1 – volume: 6 start-page: 1007 year: 2018 ident: 10.1016/j.sse.2020.107820_b0030 article-title: Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K publication-title: IEEE J Electron Devices Soc doi: 10.1109/JEDS.2018.2817458 – year: 1979 ident: 10.1016/j.sse.2020.107820_b0065 – volume: 167 start-page: 602 year: 2012 ident: 10.1016/j.sse.2020.107820_b0020 article-title: Development of low power cryogenic readout integrated circuits using fully-depleted-silicon-on-insulator CMOS technology for far-infrared image sensors publication-title: J Low Temp Phys doi: 10.1007/s10909-012-0461-6 – year: 2001 ident: 10.1016/j.sse.2020.107820_b0015 – volume: 40 start-page: 784 year: 2019 ident: 10.1016/j.sse.2020.107820_b0050 article-title: Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2019.2903111 – volume: 41 start-page: 276 year: 2020 ident: 10.1016/j.sse.2020.107820_b0055 article-title: Theoretical limit of low temperature subthreshold swing in field-effect transistors publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2019.2963379 |
SSID | ssj0002610 |
Score | 2.5121772 |
Snippet | •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107820 |
SubjectTerms | Cryogenic temperature Engineering Sciences Micro and nanotechnologies Microelectronics MOSFET Subthreshold swing |
Title | On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature |
URI | https://dx.doi.org/10.1016/j.sse.2020.107820 https://hal.science/hal-03368147 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lEU8CbFJdpvHsRRLfbUHLfQWkn1gRJLSpIoXf7szedR6sAdv2c3sEmaHeWRnviHkUmrVtaTtG6IrpMHdyDYisFKG1nbEhNbK00WW78gZTvjdtDttkH5dC4NplZXuL3V6oa2rmU7Fzc4sjrHGF6wNwlOBnIJhQz3MuYtSfv31k-YBEUIFzQjRElDXN5tFjleWIVKmjWPEjfvLNm281H9ZC6sz2CU7lbtIe-UX7ZGGSvbJ9gqI4AGJxwkFL44WPW2wuJymmiLiVAWXTOs-t0Lhm2wR5XB-GV470ewD6eOEPo6fBjfPGZUQlNM8pWL-mYJoxWJ1p0MyAaL-0KgaKBiCuTw3wBlQmoWW5bLQ8URoQjhiaoiQpB06XWExxRXGGyIELWNLLSPtg4EPlTSV53sWOyLNJE3UMaFe5Ie2EOB_2ZL7zAoRJgYeueNFIAZ-i5g16wJRoYtjk4u3oE4jew2A2wFyOyi53SJXyyWzElpjHTGvzyP4JR8BqP51yy7g7JbbI5b2sPcQ4JzJmONZ3H23Tv639ynZwlGZDXhGmvl8oc7BQ8mjdiGCbbLZu70fjr4BBvLkjw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmesz43xZEIEFigcm0ZDtY-DmnjbwD4ixtCmUI3_3hlYmnrQgzfYV8js5JsZdvYbQq6kVr4j3cgSvpCW101dKwUrZWntpkxorUJdZfmOg_jZu3_xX1qk39yFwbRKg_01pldobVpujDRvZlmGd3zB2iA9FegpGDbA4XVkp_LbZL03eIjHS0CGIMGwM0LABBOaw80qzasokCzTxXekjvvNPK29Nj9aK8Nzt0O2jcdIe_VH7ZKWyvfI1gqP4D7JJjkFR45WZW3wfjmdaoqkU4YxmTalboXCnmKRlrCFBZ480eITx2c5HU0e726fCiohLqfllIr51xS0KxOrKx2QZxjUjy1TQ8ESrOuVFvgDSrPEcbosCUKR2BCR2BqCJOkmgS8cpjyFIYdIAGhcqWWqI7DxiZK2CqPQYYeknU9zdURomEaJKwS4YK70IuYkyBQDj14QpqAJUYfYjei4MATjWOfinTeZZG8cpM1R2ryWdodcL6fManaNvwZ7zX7wHyrCAf3_mnYJe7dcHum0496QY5vNWBA6XvfDOf7f2hdkI34aDflwMH44IZvYUycHnpJ2OV-oM3BYyvTcKOQ36EbnQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+modelling+of+temperature+dependence+of+subthreshold+swing+in+MOSFETs+down+to+cryogenic+temperature&rft.jtitle=Solid-state+electronics&rft.au=Ghibaudo%2C+G%C3%A9rard&rft.au=Aouad%2C+Mohamed&rft.au=Cass%C3%A9%2C+Mika%C3%ABl&rft.au=Martinie%2C+Sebastien&rft.date=2020-08-01&rft.pub=Elsevier&rft.issn=0038-1101&rft_id=info:doi/10.1016%2Fj.sse.2020.107820&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03368147v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon |