On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature

•Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism. A comprehensive analysis of the...

Full description

Saved in:
Bibliographic Details
Published inSolid-state electronics Vol. 170; p. 107820
Main Authors Ghibaudo, G., Aouad, M., Casse, M., Martinie, S., Poiroux, T., Balestra, F.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism. A comprehensive analysis of the MOSFET subthreshold swing for a 2D subband with exponential band tail of states is first proposed. Then, a compact analytical expression for the subthreshold swing as a function of temperature is derived, well accounting for both its cryogenic temperature saturation and classical higher temperature increase. Moreover, a generalized subthreshold swing calculation applicable to the situation where the MOSFET drain current should be evaluated from the conductivity function within the Kubo-Greenwood formalism is developed.
AbstractList •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of temperature.•Generalized subthreshold swing formulation with conductivity function within Kubo-Greenwood formalism. A comprehensive analysis of the MOSFET subthreshold swing for a 2D subband with exponential band tail of states is first proposed. Then, a compact analytical expression for the subthreshold swing as a function of temperature is derived, well accounting for both its cryogenic temperature saturation and classical higher temperature increase. Moreover, a generalized subthreshold swing calculation applicable to the situation where the MOSFET drain current should be evaluated from the conductivity function within the Kubo-Greenwood formalism is developed.
ArticleNumber 107820
Author Martinie, S.
Aouad, M.
Poiroux, T.
Balestra, F.
Ghibaudo, G.
Casse, M.
Author_xml – sequence: 1
  givenname: G.
  surname: Ghibaudo
  fullname: Ghibaudo, G.
  email: gerard.ghibaudo@grenoble-inp.fr
  organization: IMEP-LAHC, Université Grenoble Alpes, MINATEC/INPG, 38016 Grenoble, France
– sequence: 2
  givenname: M.
  surname: Aouad
  fullname: Aouad, M.
  organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France
– sequence: 3
  givenname: M.
  surname: Casse
  fullname: Casse, M.
  organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France
– sequence: 4
  givenname: S.
  surname: Martinie
  fullname: Martinie, S.
  organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France
– sequence: 5
  givenname: T.
  surname: Poiroux
  fullname: Poiroux, T.
  organization: LETI-CEA, Université Grenoble Alpes, MINATEC, 38054 Grenoble, France
– sequence: 6
  givenname: F.
  surname: Balestra
  fullname: Balestra, F.
  organization: IMEP-LAHC, Université Grenoble Alpes, MINATEC/INPG, 38016 Grenoble, France
BackLink https://hal.science/hal-03368147$$DView record in HAL
BookMark eNp9kMFKAzEQhoNUsFUfwFuuHrZONrubLZ5E1AqVHtRziMmsTdkmJYmWvr0bKiIePA2Z-b8f8k3IyHmHhFwwmDJgzdV6GiNOSyjzW7QlHJExa8WsKCuoR2QMwNuCDdETMolxDQBlw2BM7NLRtEK68Qb73rp36juacLPFoNJHQGpwi86g05gv8eMtrQLGle8Njbuct44-LZ_v714iNX43tHmqw96_o7P6d9MZOe5UH_H8e56S1wG6nReL5cPj7c2i0FxUqahhhh1XjAmumlYrqGuATrDGlKqpNeNYYS3yRTS8NJ1562YVNAoNYDtrGT8ll4felerlNtiNCnvplZXzm4XMO-C8aVklPnOWHbI6-BgDdj8AA5m9yrUcvMrsVR68Doz4w2ibVLLepaBs_y95fSBx-P6nxSCjttmssQF1ksbbf-gvlrqUwA
CitedBy_id crossref_primary_10_1109_TED_2020_3022607
crossref_primary_10_1002_pssa_202300069
crossref_primary_10_1016_j_sse_2022_108343
crossref_primary_10_1016_j_sse_2022_108263
crossref_primary_10_1109_LED_2022_3185781
crossref_primary_10_1016_j_sse_2020_107949
crossref_primary_10_3390_mi14020386
crossref_primary_10_1016_j_sse_2022_108448
crossref_primary_10_1109_TED_2020_3021999
crossref_primary_10_1109_TED_2024_3499934
crossref_primary_10_1021_acs_nanolett_1c04971
crossref_primary_10_1016_j_sse_2022_108291
crossref_primary_10_1007_s11664_021_09419_0
crossref_primary_10_1016_j_sse_2021_108071
crossref_primary_10_1109_LED_2022_3217314
crossref_primary_10_1016_j_sse_2022_108271
crossref_primary_10_1016_j_sse_2021_108175
crossref_primary_10_1021_acs_nanolett_4c02463
crossref_primary_10_1063_5_0223576
crossref_primary_10_1109_LED_2022_3158495
crossref_primary_10_1016_j_sse_2023_108733
crossref_primary_10_1063_5_0233899
crossref_primary_10_1109_TED_2024_3369576
crossref_primary_10_1016_j_sse_2024_109029
crossref_primary_10_1016_j_sse_2023_108637
crossref_primary_10_1007_s42835_022_01169_1
crossref_primary_10_1007_s11051_023_05793_4
crossref_primary_10_1109_LED_2023_3331022
crossref_primary_10_1109_TED_2024_3419783
crossref_primary_10_1109_TED_2023_3283941
crossref_primary_10_1109_TNANO_2023_3314811
crossref_primary_10_1109_JEDS_2023_3327560
crossref_primary_10_1063_5_0037432
crossref_primary_10_1109_TED_2022_3183556
crossref_primary_10_1149_2162_8777_acb96b
crossref_primary_10_1016_j_mejo_2023_105880
crossref_primary_10_1007_s42341_024_00543_2
Cites_doi 10.1109/JEDS.2018.2821763
10.1063/1.1655369
10.1088/0022-3719/19/5/015
10.1038/ncomms13575
10.1088/0022-3719/20/29/003
10.1103/PhysRevApplied.3.024010
10.1103/PhysRevB.30.4493
10.1016/j.sse.2019.03.033
10.1016/0038-1101(82)90052-1
10.1109/JEDS.2018.2817458
10.1007/s10909-012-0461-6
10.1109/LED.2019.2903111
10.1109/LED.2019.2963379
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.sse.2020.107820
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2405
ExternalDocumentID oai_HAL_hal_03368147v1
10_1016_j_sse_2020_107820
S0038110120300812
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TAE
TN5
WH7
WUQ
XFK
XSW
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c374t-509ef3a1173a68ca05500f716d2a65c13e4e5768ca7632dfdbf9406aed0e89813
IEDL.DBID .~1
ISSN 0038-1101
IngestDate Fri May 09 12:13:45 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Tue Jul 01 00:43:52 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Model
MOSFET
Cryogenic temperature
Subthreshold swing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-509ef3a1173a68ca05500f716d2a65c13e4e5768ca7632dfdbf9406aed0e89813
ORCID 0000-0002-9641-9652
0000-0001-9901-0679
OpenAccessLink https://hal.science/hal-03368147
ParticipantIDs hal_primary_oai_HAL_hal_03368147v1
crossref_primary_10_1016_j_sse_2020_107820
crossref_citationtrail_10_1016_j_sse_2020_107820
elsevier_sciencedirect_doi_10_1016_j_sse_2020_107820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Solid-state electronics
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Beckers, Jazaeri, Bohuslavskyi, Hutin, De Franceschi, Enz (b0035) 2019; 159
Arnold (b0060) 1974; 25
Dugdale (b0080) 1977
Maurand, Jehl, Kotekar-Patil, Corna, Bohuslavskyi, Lavieville (b0045) 2016; 7
Gutierrez-D, Deen, Claeys (b0010) 2000
Hornibrook (b0040) 2015; 3
Bohuslavskyi, Jansen, Barraud, Barral, Casśe, Le Guevel (b0050) 2019; 40
Ghibaudo (b0070) 1986; 19
Ghibaudo (b0085) 1987; 20
Wada, Nagata, Ikeda, Arai, Ohno, Nagase (b0020) 2012; 167
Beckers, Jazaeri, Enz (b0055) 2020; 41
Incandela, Song, Homulle, Charbon, Vladimirescu, Sebastiano (b0025) 2018; 6
Mott, Davis (b0065) 1979
Cohen, Economou, Soukoulis (b0075) 1984; 30
Kamgar (b0005) 1982; 25
Balestra, Ghibaudo (b0015) 2001
Beckers, Jazaeri, Enz (b0030) 2018; 6
Maurand (10.1016/j.sse.2020.107820_b0045) 2016; 7
Balestra (10.1016/j.sse.2020.107820_b0015) 2001
Mott (10.1016/j.sse.2020.107820_b0065) 1979
Kamgar (10.1016/j.sse.2020.107820_b0005) 1982; 25
Ghibaudo (10.1016/j.sse.2020.107820_b0085) 1987; 20
Beckers (10.1016/j.sse.2020.107820_b0030) 2018; 6
Incandela (10.1016/j.sse.2020.107820_b0025) 2018; 6
Beckers (10.1016/j.sse.2020.107820_b0035) 2019; 159
Beckers (10.1016/j.sse.2020.107820_b0055) 2020; 41
Cohen (10.1016/j.sse.2020.107820_b0075) 1984; 30
Bohuslavskyi (10.1016/j.sse.2020.107820_b0050) 2019; 40
Arnold (10.1016/j.sse.2020.107820_b0060) 1974; 25
Ghibaudo (10.1016/j.sse.2020.107820_b0070) 1986; 19
Dugdale (10.1016/j.sse.2020.107820_b0080) 1977
Hornibrook (10.1016/j.sse.2020.107820_b0040) 2015; 3
Gutierrez-D (10.1016/j.sse.2020.107820_b0010) 2000
Wada (10.1016/j.sse.2020.107820_b0020) 2012; 167
References_xml – volume: 40
  start-page: 784
  year: 2019
  end-page: 787
  ident: b0050
  article-title: Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening
  publication-title: IEEE Electron Device Lett
– year: 1977
  ident: b0080
  article-title: The electrical properties of metals and alloys
– volume: 6
  start-page: 996
  year: 2018
  end-page: 1006
  ident: b0025
  article-title: Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures
  publication-title: IEEE J Electron Devices Soc
– year: 1979
  ident: b0065
  article-title: Electronic processes in non-crystalline materials
– volume: 20
  start-page: L769
  year: 1987
  end-page: L773
  ident: b0085
  article-title: Analysis of the Hall effect in the localised states below the mobility edge
  publication-title: J Phys C: Solid State Phys
– volume: 7
  start-page: 13575
  year: 2016
  ident: b0045
  article-title: A CMOS silicon spin qubit
  publication-title: Nat Commun
– volume: 19
  start-page: 767
  year: 1986
  end-page: 780
  ident: b0070
  article-title: Transport in the inversion layer of a MOS transistor: use of Kubo-Greenwood formalism
  publication-title: J Phys C: Solid State Phys
– year: 2000
  ident: b0010
  article-title: Low temperature electronics: physics, devices, circuits, and applications
– volume: 6
  start-page: 1007
  year: 2018
  end-page: 1018
  ident: b0030
  article-title: Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K
  publication-title: IEEE J Electron Devices Soc
– volume: 30
  start-page: 4493
  year: 1984
  end-page: 4500
  ident: b0075
  article-title: Microscopic mobility
  publication-title: Phys Rev B
– volume: 159
  start-page: 106
  year: 2019
  end-page: 115
  ident: b0035
  article-title: Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures
  publication-title: Solid-State Electron
– volume: 25
  start-page: 705
  year: 1974
  ident: b0060
  article-title: Disorder-induced carrier localization in silicon surface inversion layers
  publication-title: Appl Phys Lett
– year: 2001
  ident: b0015
  article-title: Device and circuit cryogenic operation for low temperature electronics
– volume: 3
  year: 2015
  ident: b0040
  article-title: Cryogenic control architecture for large-scale quantum computing
  publication-title: Phys Rev Appl
– volume: 41
  start-page: 276
  year: 2020
  end-page: 279
  ident: b0055
  article-title: Theoretical limit of low temperature subthreshold swing in field-effect transistors
  publication-title: IEEE Electron Device Lett
– volume: 25
  start-page: 537
  year: 1982
  end-page: 539
  ident: b0005
  article-title: Subthreshold behavior of silicon MOSFETs at 4.2 K
  publication-title: Solid-State Electron
– volume: 167
  start-page: 602
  year: 2012
  end-page: 608
  ident: b0020
  article-title: Development of low power cryogenic readout integrated circuits using fully-depleted-silicon-on-insulator CMOS technology for far-infrared image sensors
  publication-title: J Low Temp Phys
– volume: 6
  start-page: 996
  year: 2018
  ident: 10.1016/j.sse.2020.107820_b0025
  article-title: Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures
  publication-title: IEEE J Electron Devices Soc
  doi: 10.1109/JEDS.2018.2821763
– volume: 25
  start-page: 705
  year: 1974
  ident: 10.1016/j.sse.2020.107820_b0060
  article-title: Disorder-induced carrier localization in silicon surface inversion layers
  publication-title: Appl Phys Lett
  doi: 10.1063/1.1655369
– volume: 19
  start-page: 767
  year: 1986
  ident: 10.1016/j.sse.2020.107820_b0070
  article-title: Transport in the inversion layer of a MOS transistor: use of Kubo-Greenwood formalism
  publication-title: J Phys C: Solid State Phys
  doi: 10.1088/0022-3719/19/5/015
– volume: 7
  start-page: 13575
  year: 2016
  ident: 10.1016/j.sse.2020.107820_b0045
  article-title: A CMOS silicon spin qubit
  publication-title: Nat Commun
  doi: 10.1038/ncomms13575
– volume: 20
  start-page: L769
  year: 1987
  ident: 10.1016/j.sse.2020.107820_b0085
  article-title: Analysis of the Hall effect in the localised states below the mobility edge
  publication-title: J Phys C: Solid State Phys
  doi: 10.1088/0022-3719/20/29/003
– volume: 3
  year: 2015
  ident: 10.1016/j.sse.2020.107820_b0040
  article-title: Cryogenic control architecture for large-scale quantum computing
  publication-title: Phys Rev Appl
  doi: 10.1103/PhysRevApplied.3.024010
– volume: 30
  start-page: 4493
  year: 1984
  ident: 10.1016/j.sse.2020.107820_b0075
  article-title: Microscopic mobility
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.30.4493
– year: 1977
  ident: 10.1016/j.sse.2020.107820_b0080
– year: 2000
  ident: 10.1016/j.sse.2020.107820_b0010
– volume: 159
  start-page: 106
  year: 2019
  ident: 10.1016/j.sse.2020.107820_b0035
  article-title: Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures
  publication-title: Solid-State Electron
  doi: 10.1016/j.sse.2019.03.033
– volume: 25
  start-page: 537
  year: 1982
  ident: 10.1016/j.sse.2020.107820_b0005
  article-title: Subthreshold behavior of silicon MOSFETs at 4.2 K
  publication-title: Solid-State Electron
  doi: 10.1016/0038-1101(82)90052-1
– volume: 6
  start-page: 1007
  year: 2018
  ident: 10.1016/j.sse.2020.107820_b0030
  article-title: Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K
  publication-title: IEEE J Electron Devices Soc
  doi: 10.1109/JEDS.2018.2817458
– year: 1979
  ident: 10.1016/j.sse.2020.107820_b0065
– volume: 167
  start-page: 602
  year: 2012
  ident: 10.1016/j.sse.2020.107820_b0020
  article-title: Development of low power cryogenic readout integrated circuits using fully-depleted-silicon-on-insulator CMOS technology for far-infrared image sensors
  publication-title: J Low Temp Phys
  doi: 10.1007/s10909-012-0461-6
– year: 2001
  ident: 10.1016/j.sse.2020.107820_b0015
– volume: 40
  start-page: 784
  year: 2019
  ident: 10.1016/j.sse.2020.107820_b0050
  article-title: Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2019.2903111
– volume: 41
  start-page: 276
  year: 2020
  ident: 10.1016/j.sse.2020.107820_b0055
  article-title: Theoretical limit of low temperature subthreshold swing in field-effect transistors
  publication-title: IEEE Electron Device Lett
  doi: 10.1109/LED.2019.2963379
SSID ssj0002610
Score 2.5121772
Snippet •Comprehensive analysis of MOSFET subthreshold swing at cryogenic temperature.•Compact analytical expression for the subthreshold swing as a function of...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107820
SubjectTerms Cryogenic temperature
Engineering Sciences
Micro and nanotechnologies
Microelectronics
MOSFET
Subthreshold swing
Title On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature
URI https://dx.doi.org/10.1016/j.sse.2020.107820
https://hal.science/hal-03368147
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lEU8CbFJdpvHsRRLfbUHLfQWkn1gRJLSpIoXf7szedR6sAdv2c3sEmaHeWRnviHkUmrVtaTtG6IrpMHdyDYisFKG1nbEhNbK00WW78gZTvjdtDttkH5dC4NplZXuL3V6oa2rmU7Fzc4sjrHGF6wNwlOBnIJhQz3MuYtSfv31k-YBEUIFzQjRElDXN5tFjleWIVKmjWPEjfvLNm281H9ZC6sz2CU7lbtIe-UX7ZGGSvbJ9gqI4AGJxwkFL44WPW2wuJymmiLiVAWXTOs-t0Lhm2wR5XB-GV470ewD6eOEPo6fBjfPGZUQlNM8pWL-mYJoxWJ1p0MyAaL-0KgaKBiCuTw3wBlQmoWW5bLQ8URoQjhiaoiQpB06XWExxRXGGyIELWNLLSPtg4EPlTSV53sWOyLNJE3UMaFe5Ie2EOB_2ZL7zAoRJgYeueNFIAZ-i5g16wJRoYtjk4u3oE4jew2A2wFyOyi53SJXyyWzElpjHTGvzyP4JR8BqP51yy7g7JbbI5b2sPcQ4JzJmONZ3H23Tv639ynZwlGZDXhGmvl8oc7BQ8mjdiGCbbLZu70fjr4BBvLkjw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmesz43xZEIEFigcm0ZDtY-DmnjbwD4ixtCmUI3_3hlYmnrQgzfYV8js5JsZdvYbQq6kVr4j3cgSvpCW101dKwUrZWntpkxorUJdZfmOg_jZu3_xX1qk39yFwbRKg_01pldobVpujDRvZlmGd3zB2iA9FegpGDbA4XVkp_LbZL03eIjHS0CGIMGwM0LABBOaw80qzasokCzTxXekjvvNPK29Nj9aK8Nzt0O2jcdIe_VH7ZKWyvfI1gqP4D7JJjkFR45WZW3wfjmdaoqkU4YxmTalboXCnmKRlrCFBZ480eITx2c5HU0e726fCiohLqfllIr51xS0KxOrKx2QZxjUjy1TQ8ESrOuVFvgDSrPEcbosCUKR2BCR2BqCJOkmgS8cpjyFIYdIAGhcqWWqI7DxiZK2CqPQYYeknU9zdURomEaJKwS4YK70IuYkyBQDj14QpqAJUYfYjei4MATjWOfinTeZZG8cpM1R2ryWdodcL6fManaNvwZ7zX7wHyrCAf3_mnYJe7dcHum0496QY5vNWBA6XvfDOf7f2hdkI34aDflwMH44IZvYUycHnpJ2OV-oM3BYyvTcKOQ36EbnQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+modelling+of+temperature+dependence+of+subthreshold+swing+in+MOSFETs+down+to+cryogenic+temperature&rft.jtitle=Solid-state+electronics&rft.au=Ghibaudo%2C+G%C3%A9rard&rft.au=Aouad%2C+Mohamed&rft.au=Cass%C3%A9%2C+Mika%C3%ABl&rft.au=Martinie%2C+Sebastien&rft.date=2020-08-01&rft.pub=Elsevier&rft.issn=0038-1101&rft_id=info:doi/10.1016%2Fj.sse.2020.107820&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03368147v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon