Removal of biofilms using carbon dioxide aerosols

The formation of biofilm (bacterial film) has been serious concerns in a wide variety of applications, because it is involved in many human and device-associated infections. We present a novel method of effectively and rapidly removing Escherichia coli (XL1-blue) biofilm from a silicon chip, using c...

Full description

Saved in:
Bibliographic Details
Published inJournal of aerosol science Vol. 41; no. 11; pp. 1044 - 1051
Main Authors Kang, Min-Yeong, Jeong, Hyun-Woo, Kim, Jaeeun, Lee, Jin-Won, Jang, Jaesung
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The formation of biofilm (bacterial film) has been serious concerns in a wide variety of applications, because it is involved in many human and device-associated infections. We present a novel method of effectively and rapidly removing Escherichia coli (XL1-blue) biofilm from a silicon chip, using carbon dioxide aerosols. The aerosols were generated by adiabatic expansion of a high-pressure CO 2 gas through a nozzle and they were applied to biofilms that had been grown for 24 h on silicon chips. We measured the percentage area cover of the bacteria from the scanning electron micrographs taken before and after applying the aerosols. The decrease in the percentage area cover, caused by the aerosols, was measured as several parameters such as the distance between the nozzle and the chip, the angle of the nozzle axis relative to the horizontal, CO 2 stagnation pressure, rinsing solution, the aerosol exposure time, and drying time were varied. Nearly 100% of the biofilms were removed within 90 s whether the chip surfaces were very humid (no-drying) or dry (7 h-drying) immediately before applying the aerosols. This method has potential application to cleaning of a wide variety of bio-contaminated surfaces.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-8502
1879-1964
DOI:10.1016/j.jaerosci.2010.08.005