A multiscale modeling approach to adhesive contact
In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial regi...
Saved in:
Published in | Science China. Physics, mechanics & astronomy Vol. 54; no. 9; pp. 1680 - 1686 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science China Press
01.09.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic re- sponse characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and continuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors. |
---|---|
Bibliography: | 11-5000/N molecular dynamics, multiscale approach, adhesive contact, elastic constants In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic re- sponse characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and continuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-7348 1869-1927 |
DOI: | 10.1007/s11433-011-4405-y |