A multiscale modeling approach to adhesive contact

In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial regi...

Full description

Saved in:
Bibliographic Details
Published inScience China. Physics, mechanics & astronomy Vol. 54; no. 9; pp. 1680 - 1686
Main Authors Fan, KangQi, Wang, WeiDong, Zhu, YingMin, Zhang, XiuYan
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science China Press 01.09.2011
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic re- sponse characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and continuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.
Bibliography:11-5000/N
molecular dynamics, multiscale approach, adhesive contact, elastic constants
In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic re- sponse characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and continuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-011-4405-y