Aspartic acid racemization and repair in the survival and recovery of hyperthermophiles after prolonged starvation at high temperature

ABSTRACT Long-term survivability is well-known for microorganisms in nutrient-depleted environments, but the damage accrued by proteins and the associated repair processes during the starvation and recovery phase of microbial life still remain enigmatic. We focused on aspartic acid (Asp) racemizatio...

Full description

Saved in:
Bibliographic Details
Published inFEMS microbiology ecology Vol. 97; no. 9
Main Authors Liang, Renxing, Robb, Frank T, Onstott, Tullis C
Format Journal Article
LanguageEnglish
Published Delft Oxford University Press 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Long-term survivability is well-known for microorganisms in nutrient-depleted environments, but the damage accrued by proteins and the associated repair processes during the starvation and recovery phase of microbial life still remain enigmatic. We focused on aspartic acid (Asp) racemization and repair in the survival of Pyrococcus furiosus and Thermococcus litoralis under starvation conditions at high temperature. Despite the dramatic decrease of viability over time, 0.002% of P. furiosus cells (2.1×103 cells/mL) and 0.23% of T. litoralis cells (2.3×105 cells/mL) remained viable after 25 and 50 days, respectively. The D/L Asp ratio in the starved cells was approximately half of those from the autoclaved cells, suggesting that the starving cells were capable of partially repairing racemized Asp. Transcriptomic analyses of the recovered cells of T. litoralis indicated that the gene encoding Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) might be involved in the repair of damaged proteins by converting D-Asp back to L-Asp during the resuscitation of starved cells. Collectively, our results provided evidence that Asp underwent racemization in the surviving hyperthermophilic cells under starved conditions and PIMT played a critical role in the repair of abnormal aspartyl residues during the initial recovery of starved, yet still viable, cells. Protein damage and repair during the starvation survival processes in hyperthermophiles.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1574-6941
0168-6496
1574-6941
DOI:10.1093/femsec/fiab112