Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 10; no. 6; p. 587
Main Authors Qian, Zhiwei, Schlangen, Erik, Ye, Guang, Van Breugel, Klaas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 26.05.2017
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma10060587

Cover

Loading…
More Information
Summary:Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma10060587