COX-1–derived thromboxane A2 plays an essential role in early B-cell development via regulation of JAK/STAT5 signaling in mouse
Cyclooxygenases (COXs) and their prostanoid products play important roles in a diverse range of physiological processes, including in the immune system. Here, we provide evidence that COX-1 is an essential regulator in early stages of B-cell development. COX-1–deficient mice displayed systematic red...
Saved in:
Published in | Blood Vol. 124; no. 10; pp. 1610 - 1621 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.09.2014
American Society of Hematology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cyclooxygenases (COXs) and their prostanoid products play important roles in a diverse range of physiological processes, including in the immune system. Here, we provide evidence that COX-1 is an essential regulator in early stages of B-cell development. COX-1–deficient mice displayed systematic reduction in total B cells, which was attributed to the arrest of early B-cell development from pro-B to pre-B stage. We further demonstrated that this defect was mediated through downregulation of the Janus kinase/signal transducer and activator of transcription 5 (JAK/STAT5) signaling and its target genes, including Pax5, in COX-1−/− mice. Mechanistic studies revealed that COX-1–derived thromboxane A2 (TxA2) could regulate JAK3/STAT5 signaling through the cyclic adenosine monophosphate-protein kinase A pathway, via binding with its receptor thromboxane A2 receptor (TP). Administration of the TP agonist could rescue the defective B-cell development and JAK/STAT5 signaling activity in COX-1–deficient mice. Moreover, administration of low-dose aspirin caused a significant reduction in total B cells in peripheral blood of healthy human volunteers, coincidentally with reduced TxA2 production and downregulation of JAK/STAT5 signaling. Taken together, our results demonstrate that COX-1–derived TxA2 plays a critical role in the stage transition of early B-cell development through regulation of JAK/STAT5 signaling and indicate a potential immune-suppressive effect of low-dose aspirin in humans.
•This study demonstrated an essential role of COX-1 in early B-cell development.•Low-dose aspirin may have a potential suppressive effect on B-cell development in humans. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2014-03-559658 |