A closed-form solution for the distribution free continuous review integrated inventory model
In this paper, we develop an integrated inventory model in a single-vendor single-buyer supply chain under an unknown demand distribution at the buyer. It is assumed that each lot delivered to the buyer contains a random fraction of defective items, and lead time can be reduced at an extra crashing...
Saved in:
Published in | Operational research Vol. 18; no. 1; pp. 159 - 186 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we develop an integrated inventory model in a single-vendor single-buyer supply chain under an unknown demand distribution at the buyer. It is assumed that each lot delivered to the buyer contains a random fraction of defective items, and lead time can be reduced at an extra crashing cost. We also consider that the unmet demand at the buyer during the stockout period is partially backordered. A model is formulated to minimize the total expected relevant costs of the system considering an exact expression of the service level constraint to ensure that a certain percentage of customer orders are filled by the buyer. Closed-form expressions are derived for the optimal order quantity and safety factor for given lead time and shipment frequency, and then an algorithm is proposed to find the global optimal solution. Finally, a numerical example is presented to illustrate the solution procedure and sensitivity analysis is carried out to analyze the proposed model. |
---|---|
ISSN: | 1109-2858 1866-1505 |
DOI: | 10.1007/s12351-016-0258-5 |