Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel–zinc cells
X-ray diffraction (XRD) pattern reveals that potassium hydroxide (KOH) disrupts the crystalline nature of poly(vinyl alcohol) (PVA)-based polymer electrolytes and converts them into an amorphous phase. The PVA–KOH alkaline solid polymer electrolyte (ASPE) system with PVA/KOH wt.% ratio of 60:40 exhi...
Saved in:
Published in | Solid state ionics Vol. 156; no. 1; pp. 171 - 177 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | X-ray diffraction (XRD) pattern reveals that potassium hydroxide (KOH) disrupts the crystalline nature of poly(vinyl alcohol) (PVA)-based polymer electrolytes and converts them into an amorphous phase. The PVA–KOH alkaline solid polymer electrolyte (ASPE) system with PVA/KOH wt.% ratio of 60:40 exhibits the highest room temperature ionic conductivity of 8.5×10
−4 S cm
−1. This electrolyte was used in the fabrication of a nickel–zinc (Ni–Zn) cell. The cell was charged at a constant current of 10 mA for 1 h providing it with 1.6 V. The cell was cycled 100 times. At the end of the last cycle, the cell still contained a capacity of 5.5 mA h. |
---|---|
ISSN: | 0167-2738 1872-7689 |
DOI: | 10.1016/S0167-2738(02)00617-3 |