Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space

The present paper concentrates on the study of propagation and reflection characteristics of waves from the stress free, thermally insulated/isothermal boundary of a piezothermoelastic half space. The non-classical (generalized) theories of linear piezo-thermoelasticity have been employed to investi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of engineering science Vol. 46; no. 2; pp. 131 - 146
Main Authors Sharma, J.N., Walia, Vishal, Gupta, S.K.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present paper concentrates on the study of propagation and reflection characteristics of waves from the stress free, thermally insulated/isothermal boundary of a piezothermoelastic half space. The non-classical (generalized) theories of linear piezo-thermoelasticity have been employed to investigate the problem. In the two-dimensional model of the transversely isotropic piezothermoelastic medium, there are three types of plane waves quasi-longitudinal (QL), quasi-transverse (QT) and thermal wave ( T-mode), whose velocities depend on the angle of incidence and frequency. These waves are dispersive in character and are also affected by piezoelectric as well as pyroelectric properties of the materials. The low and high frequency approximations for the speeds of propagation and the attenuation coefficients of these waves have been obtained. The quasi-longitudinal (QL), quasi-transverse (QT) and thermal wave ( T-mode) incident cases at the stress free, thermally insulated or isothermal open circuit boundary of a transversely isotropic piezothermoelastic half space are considered to discuss the reflection characteristics of various waves. The amplitude ratios of reflected waves to that of incident one in each case have been obtained. The special cases of normal and grazing incidence are also derived and discussed. Finally, the numerical computations of reflection coefficients are carried out for cadmium Selenide (CdSe) material by using Gauss elimination procedure. In addition the phase velocities and attenuation coefficients are also computed along various directions of wave propagation. The obtained results in each case are presented graphically.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2007.10.003