Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations

Metallic sandwich panels with a cellular core such as honeycomb have the capability of dissipating considerable energy by large plastic deformation under impact/blast loading. To investigate the structural response of sandwich panels loaded by blasts, a large number of experiments have been conducte...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 35; no. 8; pp. 937 - 951
Main Authors Zhu, Feng, Zhao, Longmao, Lu, Guoxing, Wang, Zhihua
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.08.2008
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metallic sandwich panels with a cellular core such as honeycomb have the capability of dissipating considerable energy by large plastic deformation under impact/blast loading. To investigate the structural response of sandwich panels loaded by blasts, a large number of experiments have been conducted, and the experimental results are reported and discussed in this paper. Quantitative results were obtained based on the measurement in the tests by a ballistic pendulum with corresponding sensors, and then the deformation/failure modes of specimen were classified and analysed systematically. The experimental programme was designed to investigate the effects on the structural response of face-sheet and core configurations, i.e. face-sheet thickness, cell size and foil thickness of the honeycomb, and mass of charge. The experimental data were then compared with the predicted data from finite element simulations, and the results show a good agreement between the experimental and computational studies.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2007.11.003