Prenatal stress enhances severity of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring via inflammatory pathways

Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby acc...

Full description

Saved in:
Bibliographic Details
Published inJournal of developmental origins of health and disease Vol. 4; no. 1; pp. 90 - 97
Main Authors Ho, H., Lhotak, S., Solano, M. E., Karimi, K., Pincus, M. K., Austin, R. C., Arck, P.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby accelerating lesion growth. Risk factors for atherosclerosis include hypertension, smoking, stress perception or low birth weight. As prenatal stress challenge decreases the birth weight and affects the offspring's postnatal immune response, we aimed to investigate whether prenatal stress contributes to the development of atherosclerosis in mice. Syngenic pregnant apolipoprotein E-deficient (apoE−/−) dams were exposed to sound stress on gestation days 12.5 and 14.5. The presence and size of atherosclerotic plaques in the offspring at the age of 15 weeks was evaluated by histomorphology, accompanied by flow cytometric analysis of the frequency and phenotype of monocytes/macrophages and regulatory T (Treg) cells in the blood. Further, cytokine secretion of peripheral blood lymphocytes was analyzed. In response to prenatal stress challenge, an increased frequency of large atherosclerotic plaques was detectable in apoE−/− offspring, which was particularly profound in females. Prenatal stress also resulted in alterations of the offspring's immune response, such as a decreased frequency of Treg cells in blood, alterations of macrophage populations in blood and an increased secretion of inflammatory cytokines. We provide novel evidence that prenatally stressed adult offspring show an increased severity of atherosclerosis. As Treg cells are key players in dampening inflammation, the observed increase in atherosclerosis may be due to the lack of Treg cell frequency. Future interdisciplinary research is urgently required to understand the developmental origin of prenatal stress-induced atherosclerosis. The availability of our model may facilitate and foster such research endeavors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-1744
2040-1752
DOI:10.1017/S2040174412000608