Phase coexistence in polydisperse multi-Yukawa hard-sphere fluid: high temperature approximation

High temperature approximation (HTA) is used to describe the phase behavior of polydisperse multi-Yukawa hard-sphere fluid mixtures. It is demonstrated that in the frames of the HTA the model belongs to the class of "truncatable free energy models," i.e., the models with thermodynamical pr...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 125; no. 3; p. 34501
Main Authors Kalyuzhnyi, Yu V, Hlushak, S P
Format Journal Article
LanguageEnglish
Published United States 21.07.2006
Online AccessGet more information

Cover

Loading…
More Information
Summary:High temperature approximation (HTA) is used to describe the phase behavior of polydisperse multi-Yukawa hard-sphere fluid mixtures. It is demonstrated that in the frames of the HTA the model belongs to the class of "truncatable free energy models," i.e., the models with thermodynamical properties (Helmholtz free energy, chemical potential, and pressure) defined by the finite number of generalized moments. Using this property we were able to calculate the complete phase diagram (i.e., cloud and shadow curves as well as binodals) and size distribution functions of the coexisting phases of several different models of polydisperse fluids. In particular, we consider polydisperse one-Yukawa hard-sphere mixture with factorizable Yukawa coefficients and polydisperse Lennard-Jones (LJ) mixture with interaction energy parameter and/or size polydispersity. To validate the accuracy of the HTA we compare theoretical results with previously published results of more advanced mean spherical approximation (MSA) for the one-Yukawa model and with the Monte Carlo (MC) computer simulation results of [Wilding et al. J. Chem. Phys. 121, 6887 (2004); Phys. Rev. Lett. 95, 155701 (2005)] for the LJ model. We find that overall predictions of the HTA are in reasonable agreement with predictions of the MSA and MC, with the accuracy range from semiquantitative (for the phase diagram) to quantitative (for the size distribution functions).
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2212419