Three-Dimensional SPIHT Coding of Volume Images with Random Access and Resolution Scalability
End users of large volume image datasets are often interested only in certain features that can be identified as quickly as possible. For hyperspectral data, these features could reside only in certain ranges of spectral bands and certain spatial areas of the target. The same holds true for volume m...
Saved in:
Published in | EURASIP journal on image and video processing Vol. 2008; no. 1; pp. 1 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2008
SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-5176 1687-5281 |
DOI | 10.1155/2008/248905 |
Cover
Loading…
Summary: | End users of large volume image datasets are often interested only in certain features that can be identified as quickly as possible. For hyperspectral data, these features could reside only in certain ranges of spectral bands and certain spatial areas of the target. The same holds true for volume medical images for a certain volume region of the subject's anatomy. High spatial resolution may be the ultimate requirement, but in many cases a lower resolution would suffice, especially when rapid acquisition and browsing are essential. This paper presents a major extension of the 3D-SPIHT (set partitioning in hierarchical trees) image compression algorithm that enables random access decoding of any specified region of the image volume at a given spatial resolution and given bit rate from a single codestream. Final spatial and spectral (or axial) resolutions are chosen independently. Because the image wavelet transform is encoded in tree blocks and the bit rates of these tree blocks are minimized through a rate-distortion optimization procedure, the various resolutions and qualities of the images can be extracted while reading a minimum amount of bits from the coded data. The attributes and efficiency of this 3D-SPIHT extension are demonstrated for several medical and hyperspectral images in comparison to the JPEG2000 Multicomponent algorithm. |
---|---|
ISSN: | 1687-5176 1687-5281 |
DOI: | 10.1155/2008/248905 |