Localization of postresection EGF receptor expression using laser capture microdissection
Background/Purpose: Epidermal growth factor (EGF) and its receptor (EGFR) are key components in the genesis of adaptation after small bowel resection (SBR). Within intestinal homogenates, EGFR expression is increased after SBR; however, the exact cells responsible for altered EGFR expression are unk...
Saved in:
Published in | Journal of pediatric surgery Vol. 38; no. 3; pp. 440 - 445 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Elsevier Inc
01.03.2003
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background/Purpose: Epidermal growth factor (EGF) and its receptor (EGFR) are key components in the genesis of adaptation after small bowel resection (SBR). Within intestinal homogenates, EGFR expression is increased after SBR; however, the exact cells responsible for altered EGFR expression are unknown. In this study, laser capture microdissection (LCM) microscopy was used to elucidate the specific cellular compartment(s) responsible for postresection changes in EGFR expression. Methods: Male ICR mice underwent a 50% proximal SBR or sham operation. After 3 days, frozen sections were taken from the remnant ileum. Individual cells from villi, crypt, muscularis, and mesenchymal compartments were isolated by LCM. EGFR mRNA expression for each cell compartment was quantified using real-time polymerase chain reaction (PCR). Results: EGFR expression was increased after SBR within the crypt (2-fold) and muscularis compartments (3-fold). There were no changes detected after SBR in the villus tips or mesenchymal compartments. Conclusions: Increased expression of EGFR in crypts directly correlates with the zone of cell proliferation and supports the hypothesis that EGFR signaling is crucial for the mitogenic stimulus for adaptation. The finding of increased EGFR expression in the muscular compartment is novel and may implicate a role for EGFR as a mediator of the muscular hyperplasia seen after massive SBR. J Pediatr Surg 38:440-445. Copyright 2003, Elsevier Science (USA). All rights reserved. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3468 1531-5037 |
DOI: | 10.1053/jpsu.2003.50076 |