On implicational bases of closure systems with unique critical sets

We present results inspired by the study of closure systems with unique critical sets. Many of these results, however, are of a more general nature. Among those is the statement that every optimum basis of a finite closure system, in D. Maier’s sense, is also right-side optimum. New parameters for t...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 162; pp. 51 - 69
Main Authors Adaricheva, K., Nation, J.B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present results inspired by the study of closure systems with unique critical sets. Many of these results, however, are of a more general nature. Among those is the statement that every optimum basis of a finite closure system, in D. Maier’s sense, is also right-side optimum. New parameters for the size of the binary part of a closure system are established. We introduce the K-basis of a closure system, which is a refinement of the canonical basis of V. Duquenne and J.L. Guigues, and discuss a polynomial algorithm to obtain it. The main part of the paper is devoted to closure systems with unique critical sets, and some subclasses of these where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Consequently, closure systems without D-cycles can be effectively recognized. While the E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2013.08.033