On implicational bases of closure systems with unique critical sets
We present results inspired by the study of closure systems with unique critical sets. Many of these results, however, are of a more general nature. Among those is the statement that every optimum basis of a finite closure system, in D. Maier’s sense, is also right-side optimum. New parameters for t...
Saved in:
Published in | Discrete Applied Mathematics Vol. 162; pp. 51 - 69 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present results inspired by the study of closure systems with unique critical sets. Many of these results, however, are of a more general nature. Among those is the statement that every optimum basis of a finite closure system, in D. Maier’s sense, is also right-side optimum. New parameters for the size of the binary part of a closure system are established. We introduce the K-basis of a closure system, which is a refinement of the canonical basis of V. Duquenne and J.L. Guigues, and discuss a polynomial algorithm to obtain it.
The main part of the paper is devoted to closure systems with unique critical sets, and some subclasses of these where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Consequently, closure systems without D-cycles can be effectively recognized. While the E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2013.08.033 |