New volatile selenium and tellurium species in fermentation gases produced by composting duck manure

The occurrence of volatile metal(loid) compounds is investigated in gases released from a compost composed of pine shavings, duck feathers and duck excreta. The fermentation gases were sampled using Tedlar bags, pre-concentrated with cryogenic trap and finally analysed by cryo-trapping followed by g...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 42; no. 33; pp. 7786 - 7794
Main Authors Pinel-Raffaitin, P., Pécheyran, C., Amouroux, D.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The occurrence of volatile metal(loid) compounds is investigated in gases released from a compost composed of pine shavings, duck feathers and duck excreta. The fermentation gases were sampled using Tedlar bags, pre-concentrated with cryogenic trap and finally analysed by cryo-trapping followed by gas chromatography hyphenated to inductively coupled mass spectrometry (CT–GC–ICPMS). In addition to arsenic (As), bismuth (Bi), lead (Pb), antimony (Sb) and tin (Sn) volatile species, up to eight selenium (Se) and seven tellurium (Te) species, namely methylated, ethylated and mixed methyl-ethylated ones, are detected for the first time. Although few volatile species standards are available, their identification or semi-identification is established by using quantitative structure–activity relationship (QSAR) through the correlation between boiling point and retention time of each compound. Their semi-quantification highlights maximal concentrations ranging from 30 to 2300 ng m −3 for Se species and from 10 to 500 ng m −3 for Te species. The variations of their concentrations are examined by emphasizing the influences of both compost nature and compost maturation stage. Finally, the results obtained in this study outline the diversity and the quantity of Se and Te species especially in comparison with other fermentation gases. Their release could thus induce “olfactory pollution” and potential sanitary and environmental impacts if no effluent treatment is applied during the compost production.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2008.04.052