Light and latex: advances in the photochemistry of polymer colloids
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles. This review highlights major advances in photochemistry, both as stimulus and response, to generate unprecedented functiona...
Saved in:
Published in | Polymer chemistry Vol. 11; no. 21; pp. 3498 - 3524 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles. This review highlights major advances in photochemistry, both as stimulus and response, to generate unprecedented functionality in polymer colloids. Light-based chemical modification generates polymer particles with unique structural complexity, and the incorporation of photoactive functionalities transforms inert particles into photoactive nanodevices. Latex photo-functionality, which is reflected in both the colloidal and coalesced states, enables photochromism, photoswitchable aggregation, tunable fluorescence, photoactivated crosslinking and solidification, and photomechanical actuation. Previous literature explores the capacity of photochemistry, which complements the rheological and processing advantages of latex, to expand beyond traditional coatings applications and enable disruptive technologies in critical areas including nanomedicine, data security, and additive manufacturing.
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles. |
---|---|
ISSN: | 1759-9954 1759-9962 |
DOI: | 10.1039/d0py00349b |