Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures

We performed predictive hybrid-DFT computations for PbTiO3, BaTiO3, SrTiO3, PbZrO3 and SrZrO3 (001) surfaces, as well as their BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) heterostructures. According to our hybrid-DFT computations for BO2 and AO-terminated ABO3 solid (001) surfaces, in most...

Full description

Saved in:
Bibliographic Details
Published inCondensed matter Vol. 7; no. 4; p. 70
Main Authors Eglitis, Roberts I., Piskunov, Sergei, Popov, Anatoli I., Purans, Juris, Bocharov, Dmitry, Jia, Ran
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We performed predictive hybrid-DFT computations for PbTiO3, BaTiO3, SrTiO3, PbZrO3 and SrZrO3 (001) surfaces, as well as their BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) heterostructures. According to our hybrid-DFT computations for BO2 and AO-terminated ABO3 solid (001) surfaces, in most cases, the upper layer ions relax inwards, whereas the second layer ions shift upwards. Our hybrid-DFT computed surface rumpling s for the BO2-terminated ABO3 perovskite (001) surfaces almost always is positive and is in a fair agreement with the available LEED and RHEED experiments. Computed B-O atom chemical bond population values in the ABO3 perovskite bulk are enhanced on its BO2-terminated (001) surfaces. Computed surface energies for BO2 and AO-terminated ABO3 perovskite (001) surfaces are comparable; thus, both (001) surface terminations may co-exist. Our computed ABO3 perovskite bulk Γ-Γ band gaps are in fair agreement with available experimental data. BO2 and AO-terminated (001) surface Γ-Γ band gaps are always reduced with regard to the respective bulk band gaps. For our computed BTO/STO and PTO/STO (001) interfaces, the average augmented upper-layer atom relaxation magnitudes increased by the number of augmented BTO or PTO (001) layers and always were stronger for TiO2-terminated than for BaO or PbO-terminated upper layers. Our B3PW concluded that BTO/STO, as well as SZO/PZO (001) interface Γ-Γ band gaps, very strongly depends on the upper augmented layer BO2 or AO-termination but considerably less so on the number of augmented (001) layers.
ISSN:2410-3896
2410-3896
DOI:10.3390/condmat7040070