Multi‐Layer π‐Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters

Multi‐layer π‐stacked emitters based on spatially confined donor/acceptor/donor (D/A/D) patterns have been developed to achieve high‐efficiency thermally activated delayed fluorescence (TADF). In this case, dual donor moieties and a single acceptor moiety are introduced to form two three‐dimensional...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 10; pp. 5213 - 5219
Main Authors Wang, Xue‐Qi, Yang, Sheng‐Yi, Tian, Qi‐Sheng, Zhong, Cheng, Qu, Yang‐Kun, Yu, You‐Jun, Jiang, Zuo‐Quan, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi‐layer π‐stacked emitters based on spatially confined donor/acceptor/donor (D/A/D) patterns have been developed to achieve high‐efficiency thermally activated delayed fluorescence (TADF). In this case, dual donor moieties and a single acceptor moiety are introduced to form two three‐dimensional (3D) emitters, DM‐BD1 and DM‐BD2, which rely on spatial charge transfer (CT). Owing to the enforced face‐to‐face D/A/D pattern, effective CT interactions are realized, which lead to high photoluminescence quantum yields (PLQYs) of 94.2 % and 92.8 % for the two molecules, respectively. The resulting emitters exhibit small singlet–triplet energy splitting (ΔEST) and fast reverse intersystem crossing (RISC) processes. Maximum external quantum efficiencies (EQEs) of 28.0 % and 26.6 % were realized for devices based on DM‐BD1 and DM‐BD2, respectively, which are higher than those of their D/A‐type analogues. Multi‐Layer π‐stacked molecules are designed to realize efficient thermally activated delayed fluorescence. Spatially confined molecules with stereochemical structures are constructed in donor/acceptor/donor architectures with different conformations. Their organic light‐emitting diode (OLED) devices exhibit high external quantum efficiencies (EQEs) of 28.0 %/26.6 %, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202011384