Polymer Solar Cells with 90% External Quantum Efficiency Featuring an Ideal Light‐ and Charge‐Manipulation Layer
Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 13; pp. e1706083 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al2O3 composite film is presented as an efficient light‐ and charge‐manipulation layer (LCML). The Al2O3 shells on the ZnO nanoparticles offer the passivation effect that allows optimal electron collection by suppressing charge‐recombination loss. Both the increased refractive index and the patterned deterministic aperiodic nanostructure in the ZnO:Al2O3 LCML cause broadband light harvesting. Highly efficient single‐junction PSCs for different binary blends are obtained with a peak external quantum efficiency of up to 90%, showing certified PCEs of 9.69% and 13.03% for a fullerene blend of PTB7:PC71BM and a nonfullerene blend, FTAZ:IDIC, respectively. Because of the substantial increase in efficiency, this method unlocks the full potential of the ZnO:Al2O3 LCML toward future photovoltaic applications.
Highly efficient polymer solar cells based on nanopatterned ZnO:Al2O3 composite film achieve a peak external quantum efficiency up to 90% and a certified power conversion efficiency of 13.03%. Optical and electrical studies demonstrate enhanced light harvesting due to passivation‐ and dipole‐induced suppression of charge recombination loss and broadband absorption enhancement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0935-9648 1521-4095 1521-4095 |
DOI: | 10.1002/adma.201706083 |