A Full‐Device Autonomous Self‐Healing Stretchable Soft Battery from Self‐Bonded Eutectogels
Next‐generation energy storage devices should be soft, stretchable, and self‐healable. Previously reported self‐healable batteries mostly possess limited stretchability and rely on healable electrodes or electrolytes rather than achieving full‐device self‐healability. Herein, an all‐component self‐b...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 6; pp. e2208392 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Next‐generation energy storage devices should be soft, stretchable, and self‐healable. Previously reported self‐healable batteries mostly possess limited stretchability and rely on healable electrodes or electrolytes rather than achieving full‐device self‐healability. Herein, an all‐component self‐bonding strategy is reported to obtain an all‐eutectogel soft battery (AESB) that simultaneously achieves full‐cell autonomous self‐healability and omnidirectional intrinsic stretchability (>1000% areal strain) over a broad temperature range (−20~60 °C). Without requiring any external stimulus, the five‐layered soft battery can efficiently recover both its mechanical and electrochemical performance at full‐cell level. The developed AESB can be easily configured into various 3D architectures with highly interfacial compatible eutectogel electrodes, electrolyte, and substrate, presenting an excellent opportunity for the development of embodied energy technologies. The present work provides a general and user‐friendly soft electronic material platform for fabricating a variety of intrinsic self‐healing stretchable multi‐layered electronics, which are promising beyond the field of energy storage, such as displays, sensors, circuits, and soft robots.
Most reported self‐healable batteries possess limited stretchability and unable to achieve full‐device self‐healability. Herein, an all‐component self‐bonding strategy is presented to obtain an all‐eutectogel soft battery (AESB) that simultaneously achieves full‐cell autonomous self‐healability and omnidirectional intrinsic stretchability (>1000% areal strain) even at –20 °C. The present work provides a general soft electronic material platform for fabricating next‐generation self‐healing stretchable electronics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202208392 |