Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch
Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4H...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 63; no. 38; pp. e202408551 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.09.2024
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water.
We report a novel material (C5H6NO)+(CH3SO3)− (4HPMS), exhibiting the strongest second harmonic generation (SHG) intensity among all heat‐stimulated nonlinear optical (NLO) switches. We unravel an unprecedently easier breaking of the shorter hydrogen bond and a rare large thermal hysteresis of 50 °C during the reversible structural phase transition. |
---|---|
AbstractList | Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (∆n(Zeiss) = 0.216 vs ∆n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ∆n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water. Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water. Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. We report a novel material (C5H6NO)+(CH3SO3)− (4HPMS), exhibiting the strongest second harmonic generation (SHG) intensity among all heat‐stimulated nonlinear optical (NLO) switches. We unravel an unprecedently easier breaking of the shorter hydrogen bond and a rare large thermal hysteresis of 50 °C during the reversible structural phase transition. Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C 5 H 6 NO) + (CH 3 SO 3 ) − (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna 2 1 room temperature phase (RTP) to the centrosymmetric P 2 1 / c phase, caused by the rotation of the (C 5 H 6 NO) + and (CH 3 SO 3 ) − due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C 5 H 6 NO) + primarily dictates both the SHG coefficient ( d ij ) and birefringence (▵ n (Zeiss) = 0.216 vs ▵ n (cal.) = 0.202 at 546 nm; Δ n (Immersion) = 0.210 vs ▵ n (cal.) = 0.198 at 589.3 nm), while the band gap ( E g ) is influenced synergistically by (C 5 H 6 NO) + and (CH 3 SO 3 ) − . Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. |
Author | Zhao, Shuang Wu, Li‐Ming Liu, Xin He, Wen‐Jie Zhou, Zhengyang Zhang, Zi‐Peng Wang, Rui‐Xi Chen, Hong‐Yu Deng, Xue‐Bin Chen, Ling |
Author_xml | – sequence: 1 givenname: Zi‐Peng surname: Zhang fullname: Zhang, Zi‐Peng organization: Beijing Normal University – sequence: 2 givenname: Xin surname: Liu fullname: Liu, Xin organization: Beijing Normal University – sequence: 3 givenname: Rui‐Xi surname: Wang fullname: Wang, Rui‐Xi organization: Beijing Normal University – sequence: 4 givenname: Shuang surname: Zhao fullname: Zhao, Shuang organization: Beijing Normal University – sequence: 5 givenname: Wen‐Jie surname: He fullname: He, Wen‐Jie organization: Beijing Normal University – sequence: 6 givenname: Hong‐Yu surname: Chen fullname: Chen, Hong‐Yu organization: Beijing Normal University – sequence: 7 givenname: Xue‐Bin surname: Deng fullname: Deng, Xue‐Bin organization: Beijing Normal University – sequence: 8 givenname: Li‐Ming surname: Wu fullname: Wu, Li‐Ming email: wlm@bnu.edu.cn organization: Beijing Normal University – sequence: 9 givenname: Zhengyang surname: Zhou fullname: Zhou, Zhengyang email: zhouzhengyang@mail.sic.ac.cn organization: Chinese Academy of Sciences – sequence: 10 givenname: Ling orcidid: 0000-0002-3693-4193 surname: Chen fullname: Chen, Ling email: chenl@bnu.edu.cn organization: Beijing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38858167$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v0zAYhy00xP7AlSOyxKUTSrHj2HG4jTKWSVMrtdvZcpw3q0diFyfd1G-w8y58Pz4JLt1AmoQ42bKf56dXv_cQ7TnvAKG3lIwpIelH7SyMU5JmRHJOX6ADylOasDxne_GeMZbkktN9dNj3N5GXkohXaJ9JySUV-QH6MYdOh2-6agEvwHhX41KHzjtr8Bk4CHqw3uE59CvvesDW4dGEl2I6O_4wmpRsMWPHP-8fPuErF_QttNZd42EJeO5joG9wuamDvwaHP2-jo325hNDpFn8J9jY-T72LDuiAZ6vBmvixuLODWb5GLxvd9vDm8TxCV19PLydlcjE7O5-cXCSG5YwmXFekaggIXdXCZAKqAqSgecObNGONkFkjWSpkBRw4qVPCBa855XXVaJM2hh2h0S53Ffz3NfSD6mxvoG21A7_uFSNC5AUjhYjo-2fojV8HF6dTjJJCZhnneaTePVLrqoNarYKNBW_UU-URyHaACb7vAzTK2OF3y0PQtlWUqO1m1Xaz6s9mozZ-pj0l_1ModsKdbWHzH1qdTM9P_7q_AKJ2te0 |
CitedBy_id | crossref_primary_10_1039_D4MH01790K crossref_primary_10_1002_adfm_202419204 crossref_primary_10_1039_D5SC00112A crossref_primary_10_1021_acs_chemmater_4c03326 crossref_primary_10_1002_lpor_202500105 crossref_primary_10_1021_acs_inorgchem_5c00476 |
Cites_doi | 10.1107/S0365110X64003553 10.1002/ange.201909760 10.1016/j.poly.2021.115191 10.1021/acs.chemmater.3c03278 10.1016/j.molstruc.2018.10.008 10.1002/ange.200704138 10.1021/acs.chemmater.5b01716 10.1002/zaac.201600023 10.1002/anie.201100914 10.1016/S0030-4018(02)01825-4 10.1021/ja0269082 10.1016/j.ccr.2018.02.017 10.1002/anie.202301404 10.1002/ange.202000290 10.1002/anie.200704138 10.1002/adma.201203369 10.1002/anie.201909760 10.1021/acs.chemrev.6b00033 10.1021/acs.accounts.9b00448 10.1007/s10854-022-07927-1 10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D 10.1016/j.ccr.2020.213692 10.1002/ange.201100914 10.1021/jacs.0c01741 10.1021/acs.chemmater.1c00362 10.1002/(SICI)1521-3757(19990201)111:3<377::AID-ANGE377>3.0.CO;2-6 10.1002/chem.202000188 10.1002/ange.202301404 10.1002/anie.202000290 10.1002/chem.201403811 10.1103/PhysRevB.36.6497 10.1002/adfm.201300180 10.1039/D2QI00200K 10.1002/ange.202301937 10.1021/ja4131615 10.1002/slct.201900598 10.1063/1.1656857 10.1039/C6TC05105G 10.1039/C7CC02625K 10.1021/ja302395f 10.1021/jacs.5b11088 10.31635/ccschem.023.202202582 10.1002/anie.202301937 10.1021/jacs.1c00959 10.1016/j.ijleo.2022.170301 10.31635/ccschem.020.202000436 10.1021/acsami.0c19507 10.1016/S0022-0248(98)00162-6 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH 2024 Wiley‐VCH GmbH. 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH – notice: 2024 Wiley‐VCH GmbH. – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202408551 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 38858167 10_1002_anie_202408551 ANIE202408551 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3731-5ab0bf0e6abd6c46eb9e8617f5f243f684f83268be5e50d20565d515dbfac2fc3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:16:39 EDT 2025 Fri Jul 25 11:44:44 EDT 2025 Wed Feb 19 02:09:51 EST 2025 Tue Jul 01 05:24:02 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Wed Jan 22 17:14:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | NLO switch organic−inorganic hybrid group rotation partial hydrogen bonds breaking 4-hydroxypyridinum |
Language | English |
License | 2024 Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-5ab0bf0e6abd6c46eb9e8617f5f243f684f83268be5e50d20565d515dbfac2fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3693-4193 |
PMID | 38858167 |
PQID | 3109844557 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_3066793096 proquest_journals_3109844557 pubmed_primary_38858167 crossref_citationtrail_10_1002_anie_202408551 crossref_primary_10_1002_anie_202408551 wiley_primary_10_1002_anie_202408551_ANIE202408551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 16, 2024 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: September 16, 2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 1987; 36 2019; 4 2023; 5 2020; 142 2021; 202 2013; 23 1999 1999; 38 111 2002; 210 2020 2020; 59 132 2023 2023; 62 135 2008 2008; 47 120 2021; 143 2016; 642 2024; 36 2014; 136 2019 2019; 58 131 2014; 20 1998; 191 2021; 13 2018; 375 2017; 53 2015; 27 2012; 134 2020; 2 2021; 33 1968; 39 2015; 137 2020; 53 2021; 431 2023; 272 1964; 17 2002; 124 2022; 9 2020; 26 2016; 116 2011 2011; 50 123 2022; 33 2012; 24 2019; 1178 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_36_2 e_1_2_7_38_2 |
References_xml | – volume: 26 start-page: 5887 year: 2020 end-page: 5892 publication-title: Chem. Eur. J. – volume: 13 start-page: 2044 year: 2021 end-page: 2051 publication-title: ACS Appl. Mater. Interfaces – volume: 431 year: 2021 publication-title: Coord. Chem. Rev. – volume: 33 start-page: 2929 year: 2021 end-page: 2936 publication-title: Chem. Mater. – volume: 142 start-page: 6423 year: 2020 end-page: 6431 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2298 year: 2020 end-page: 2306 publication-title: CCS Chem. – volume: 33 start-page: 7750 year: 2022 end-page: 7764 publication-title: J. Mater. Sci. Mater. Electron. – volume: 134 start-page: 8101 year: 2012 end-page: 8103 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1708 year: 2022 end-page: 1713 publication-title: Inorg. Chem. Front. – volume: 116 start-page: 13043 year: 2016 end-page: 13233 publication-title: Chem. Rev. – volume: 191 start-page: 517 year: 1998 end-page: 519 publication-title: J. Cryst. Growth – volume: 642 start-page: 467 year: 2016 end-page: 471 publication-title: Z. Anorg. Allg. Chem. – volume: 136 start-page: 5367 year: 2014 end-page: 5375 publication-title: J. Am. Chem. Soc. – volume: 202 year: 2021 publication-title: Polyhedron – volume: 210 start-page: 393 year: 2002 end-page: 398 publication-title: Opt. Commun. – volume: 124 start-page: 14410 year: 2002 end-page: 14415 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5277 year: 2013 end-page: 5284 publication-title: Adv. Funct. Mater. – volume: 272 year: 2023 publication-title: Optik – volume: 17 start-page: 1437 year: 1964 end-page: 1449 publication-title: Acta Crystallogr. – volume: 375 start-page: 459 year: 2018 end-page: 488 publication-title: Coord. Chem. Rev. – volume: 50 123 start-page: 9128 9294 year: 2011 2011 end-page: 9132 9298 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 62 135 year: 2023 2023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 111 start-page: 366 377 year: 1999 1999 end-page: 369 380 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 27 start-page: 4493 year: 2015 end-page: 4498 publication-title: Chem. Mater. – volume: 20 start-page: 15349 year: 2014 end-page: 15353 publication-title: Chem. Eur. J. – volume: 39 start-page: 3798 year: 1968 end-page: 3813 publication-title: J. Appl. Phys. – volume: 36 start-page: 6497 year: 1987 end-page: 6500 publication-title: Phys. Rev. B – volume: 36 start-page: 2113 year: 2024 end-page: 2123 publication-title: Chem. Mater. – volume: 47 120 start-page: 577 587 year: 2008 2008 end-page: 580 590 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 15660 year: 2015 end-page: 15663 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 209 year: 2020 end-page: 217 publication-title: Acc. Chem. Res. – volume: 5 start-page: 1529 year: 2017 end-page: 1536 publication-title: J. Mater. Chem. C – volume: 59 132 start-page: 9574 9661 year: 2020 2020 end-page: 9578 9665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 2497 year: 2023 end-page: 2505 publication-title: CCS Chem. – volume: 24 start-page: 6410 year: 2012 end-page: 6415 publication-title: Adv. Mater. – volume: 58 131 start-page: 15128 15272 year: 2019 2019 end-page: 15135 15279 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 3921 year: 2019 end-page: 3925 publication-title: ChemistrySelect – volume: 53 start-page: 7669 year: 2017 end-page: 7672 publication-title: Chem. Commun. – volume: 143 start-page: 3647 year: 2021 end-page: 3654 publication-title: J. Am. Chem. Soc. – volume: 1178 start-page: 52 year: 2019 end-page: 61 publication-title: J. Mol. Struct. – ident: e_1_2_7_20_1 – ident: e_1_2_7_21_1 doi: 10.1107/S0365110X64003553 – ident: e_1_2_7_36_2 doi: 10.1002/ange.201909760 – ident: e_1_2_7_22_1 doi: 10.1016/j.poly.2021.115191 – ident: e_1_2_7_45_1 doi: 10.1021/acs.chemmater.3c03278 – ident: e_1_2_7_29_1 doi: 10.1016/j.molstruc.2018.10.008 – ident: e_1_2_7_10_3 doi: 10.1002/ange.200704138 – ident: e_1_2_7_13_1 doi: 10.1021/acs.chemmater.5b01716 – ident: e_1_2_7_31_1 doi: 10.1002/zaac.201600023 – ident: e_1_2_7_33_1 – ident: e_1_2_7_39_2 doi: 10.1002/anie.201100914 – ident: e_1_2_7_47_1 doi: 10.1016/S0030-4018(02)01825-4 – ident: e_1_2_7_40_1 doi: 10.1021/ja0269082 – ident: e_1_2_7_3_2 doi: 10.1016/j.ccr.2018.02.017 – ident: e_1_2_7_8_1 – ident: e_1_2_7_5_1 – ident: e_1_2_7_17_1 doi: 10.1002/anie.202301404 – ident: e_1_2_7_26_2 doi: 10.1002/ange.202000290 – ident: e_1_2_7_10_2 doi: 10.1002/anie.200704138 – ident: e_1_2_7_34_2 doi: 10.1002/adma.201203369 – ident: e_1_2_7_36_1 doi: 10.1002/anie.201909760 – ident: e_1_2_7_2_2 doi: 10.1021/acs.chemrev.6b00033 – ident: e_1_2_7_43_1 doi: 10.1021/acs.accounts.9b00448 – ident: e_1_2_7_30_1 doi: 10.1007/s10854-022-07927-1 – ident: e_1_2_7_12_1 doi: 10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D – ident: e_1_2_7_4_2 doi: 10.1016/j.ccr.2020.213692 – ident: e_1_2_7_39_3 doi: 10.1002/ange.201100914 – ident: e_1_2_7_9_2 doi: 10.1021/jacs.0c01741 – ident: e_1_2_7_11_2 doi: 10.1021/acs.chemmater.1c00362 – ident: e_1_2_7_12_2 doi: 10.1002/(SICI)1521-3757(19990201)111:3<377::AID-ANGE377>3.0.CO;2-6 – ident: e_1_2_7_24_1 doi: 10.1002/chem.202000188 – ident: e_1_2_7_17_2 doi: 10.1002/ange.202301404 – ident: e_1_2_7_37_1 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202000290 – ident: e_1_2_7_41_1 doi: 10.1002/chem.201403811 – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevB.36.6497 – ident: e_1_2_7_38_2 doi: 10.1002/adfm.201300180 – ident: e_1_2_7_15_1 doi: 10.1039/D2QI00200K – ident: e_1_2_7_23_2 doi: 10.1002/ange.202301937 – ident: e_1_2_7_35_2 doi: 10.1021/ja4131615 – ident: e_1_2_7_19_1 doi: 10.1002/slct.201900598 – ident: e_1_2_7_32_1 doi: 10.1063/1.1656857 – ident: e_1_2_7_1_1 – ident: e_1_2_7_16_1 doi: 10.1039/C6TC05105G – ident: e_1_2_7_18_1 doi: 10.1039/C7CC02625K – ident: e_1_2_7_6_2 doi: 10.1021/ja302395f – ident: e_1_2_7_14_1 doi: 10.1021/jacs.5b11088 – ident: e_1_2_7_46_1 doi: 10.31635/ccschem.023.202202582 – ident: e_1_2_7_23_1 doi: 10.1002/anie.202301937 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.1c00959 – ident: e_1_2_7_28_1 doi: 10.1016/j.ijleo.2022.170301 – ident: e_1_2_7_7_2 doi: 10.31635/ccschem.020.202000436 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.0c19507 – ident: e_1_2_7_44_1 doi: 10.1016/S0022-0248(98)00162-6 |
SSID | ssj0028806 |
Score | 2.542292 |
Snippet | Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering... Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202408551 |
SubjectTerms | 4-hydroxypyridinium Birefringence Density functional theory group rotation Hydrogen bonding Hydrogen bonds Laser damage NLO switch Nonlinear optics Optical switching Optoelectronics organic–inorganic hybrid partial hydrogen bonds breaking Room temperature Second harmonic generation Yield point |
Title | Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202408551 https://www.ncbi.nlm.nih.gov/pubmed/38858167 https://www.proquest.com/docview/3109844557 https://www.proquest.com/docview/3066793096 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7ABynNKQUZCohVKm_ErSXfV0CogMSPNMFJ3kV-RqrZJlc4I0S9gzYb_40t6bzwJDAghwS5R7MSOj-1j-95zCXklpHOZF1kkkthFAtZukRlmSSQ0nhmpUplWp-DDWOVz8f5EnvzkxR_0IfoNN-wZ7XiNHVybq_0foqHogQ3ru1aiq_WhRoMtZEXTXj-KATiDexHnEUah71QbY7a_nn19VvqNaq4z13bqOb5HdFfoYHFytrdcmD17_Yue4__U6j65u-Kl9DAAaZPc8tUDcnvUhYN7SL5N_YVuztDTis5wFe1orpsLVNalQbsam5hOg82tp6cV3RnJXI0nu292RjmfTfju9y9fD-i8wohH6AVPgXzSaQ0vrEuaf3ZNDWimGOgYcwOAYdI4p28bHJDpONRON3Ry2e6_09mnU4DcIzI_Pvo4yqNVVIfI8oQPI6lNbMrYK22cskJ5k_kUeFQpSyZ4qVJRwiijUuOll7FjwNCkA9blTKktKy1_TDaquvJPCdXMCpZIoY21IuUIOu8si4WHocoKPyBR16qFXUmeY-SN8yKINbMCf3fR_-4Bed2nvwxiH39Mud2BpFh1-qsCRVZTIaRMBuRl_xiaCc9gdOXrJaRBo-KMw8JxQJ4EcPWf4mkq06GC3KyFyF_KUByO3x31d1v_kukZuYPXaP8yVNtkY9Es_XMgWQvzou1IN6AWHac |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLlPfSAkZCohVKm_UrCbdq2yqFNivtdiVukZ9S1Tapwq4Q_ALOXPh__BI88SZoQQgJjknsxI6_GY_tmW8Qesm4MZllWcSS2ETMr90iNcySiEk4MxJOqJan4LQQ-Yy9fc87b0KIhQn8EP2GG0hGq69BwGFDeu8nayiEYPsFXsvRBUHUNyGtN9DnH0x6Bini4RkCjCiNIA99x9sYk73V-qvz0m_G5qrt2k4-R3eQ6podfE4udhdztas__8Lo-F_92kC3l6Yp3g9Yuotu2OoeWh91GeHuo28TeyWbCwi2wlNYSBucy-YKyHVxoK-GUcaT4HZr8XmFt0c8F8V45_X2KKfTMd35_uXrGzyrIOkRBMJjb3_iSe1fWDucfzJN7QGNIdcx1PYY9vPGJT5oQCfjInRPNnh83W7B4-nHc4-6B2h2dHg2yqNlYodI04QOIy5VrFxshVRGaCasymzqTSnHHWHUiZQ5r2hEqiy3PDbEG2nceMPLKCc1cZo-RGtVXdnHCEuiGUk4k0prllLAnTWaxMx6baWZHaCoG9ZSL1nPIfnGZRn4mkkJv7vsf_cAverLXwe-jz-W3OpQUi7l_kMJPKspY5wnA_Sif-yHCY5hZGXrhS8DfsUZ9WvHAXoU0NV_iqYpT4fC1yYtRv7ShnK_OD7sr578S6XnaD0_Oz0pT46Ld5voFtwHd5ih2EJr82Zhn3qba66etVL1A3OkIcM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQkIAX7pfCACMhsQllS31LwtvUrsq4pKil0t4iX6VpW1KFVgh-Ac-88P_4JfjEbaAghASPSezEjr9zfGyf8x2EnjJuTGZZFrEkNhHza7dI9bMkYhLOjIQTquUpeFOIfMZeHvPjn6L4Az9Et-EGktHqaxDwuXH7P0hDIQLbr-9aii6Iob7IRJxB8obhpCOQIh6dIb6I0gjS0K9pG2Oyv1l_c1r6zdbcNF3buWd0Dcl1q4PLyenecqH29KdfCB3_p1vX0dWVYYoPApJuoAu2uokuD9b54G6hrxN7LptTCLXCU1hGG5zL5hyodXEgr4YxxpPgdGvxSYV3BjwXxXj3-c4gp9Mx3f32-csLPKsg5RGEwWNvfeJJ7V9YO5x_NE3t4Ywh0zHU9gj2s8YZHjagkXEReicbPJ63G_B4-uHEY-42mo0O3w3yaJXWIdI0of2ISxUrF1shlRGaCasym3pDynFHGHUiZc6rGZEqyy2PDfEmGjfe7DLKSU2cpnfQVlVX9h7CkmhGEs6k0pqlFFBnjSYxs15XaWZ7KFqPaqlXnOeQeuOsDGzNpITfXXa_u4eedeXnge3jjyW31yApV1L_vgSW1ZQxzpMeetI99sMEhzCysvXSlwGv4oz6lWMP3Q3g6j5F05SnfeFrkxYif2lDeVAcHXZX9_-l0mN06e1wVL4-Kl49QFfgNvjC9MU22lo0S_vQG1wL9aiVqe_r0CBy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarkable+Second+Harmonic+Generation+Response+in+%28C+5+H+6+NO%29+%2B+%28CH+3+SO+3+%29+%E2%88%92+%3A+Unraveling+the+Role+of+Hydrogen+Bond+in+Thermal+Driven+Nonlinear+Optical+Switch&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Zi%E2%80%90Peng&rft.au=Liu%2C+Xin&rft.au=Wang%2C+Rui%E2%80%90Xi&rft.au=Zhao%2C+Shuang&rft.date=2024-09-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=38&rft_id=info:doi/10.1002%2Fanie.202408551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202408551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |