Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch

Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4H...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 38; pp. e202408551 - n/a
Main Authors Zhang, Zi‐Peng, Liu, Xin, Wang, Rui‐Xi, Zhao, Shuang, He, Wen‐Jie, Chen, Hong‐Yu, Deng, Xue‐Bin, Wu, Li‐Ming, Zhou, Zhengyang, Chen, Ling
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.09.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. We report a novel material (C5H6NO)+(CH3SO3)− (4HPMS), exhibiting the strongest second harmonic generation (SHG) intensity among all heat‐stimulated nonlinear optical (NLO) switches. We unravel an unprecedently easier breaking of the shorter hydrogen bond and a rare large thermal hysteresis of 50 °C during the reversible structural phase transition.
AbstractList Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (∆n(Zeiss) = 0.216 vs ∆n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ∆n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.
Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water.
Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.
Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. We report a novel material (C5H6NO)+(CH3SO3)− (4HPMS), exhibiting the strongest second harmonic generation (SHG) intensity among all heat‐stimulated nonlinear optical (NLO) switches. We unravel an unprecedently easier breaking of the shorter hydrogen bond and a rare large thermal hysteresis of 50 °C during the reversible structural phase transition.
Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C 5 H 6 NO) + (CH 3 SO 3 ) − (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna 2 1 room temperature phase (RTP) to the centrosymmetric P 2 1 / c phase, caused by the rotation of the (C 5 H 6 NO) + and (CH 3 SO 3 ) − due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C 5 H 6 NO) + primarily dictates both the SHG coefficient ( d ij ) and birefringence (▵ n (Zeiss) = 0.216 vs ▵ n (cal.) = 0.202 at 546 nm; Δ n (Immersion) = 0.210 vs ▵ n (cal.) = 0.198 at 589.3 nm), while the band gap ( E g ) is influenced synergistically by (C 5 H 6 NO) + and (CH 3 SO 3 ) − . Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water.
Author Zhao, Shuang
Wu, Li‐Ming
Liu, Xin
He, Wen‐Jie
Zhou, Zhengyang
Zhang, Zi‐Peng
Wang, Rui‐Xi
Chen, Hong‐Yu
Deng, Xue‐Bin
Chen, Ling
Author_xml – sequence: 1
  givenname: Zi‐Peng
  surname: Zhang
  fullname: Zhang, Zi‐Peng
  organization: Beijing Normal University
– sequence: 2
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Beijing Normal University
– sequence: 3
  givenname: Rui‐Xi
  surname: Wang
  fullname: Wang, Rui‐Xi
  organization: Beijing Normal University
– sequence: 4
  givenname: Shuang
  surname: Zhao
  fullname: Zhao, Shuang
  organization: Beijing Normal University
– sequence: 5
  givenname: Wen‐Jie
  surname: He
  fullname: He, Wen‐Jie
  organization: Beijing Normal University
– sequence: 6
  givenname: Hong‐Yu
  surname: Chen
  fullname: Chen, Hong‐Yu
  organization: Beijing Normal University
– sequence: 7
  givenname: Xue‐Bin
  surname: Deng
  fullname: Deng, Xue‐Bin
  organization: Beijing Normal University
– sequence: 8
  givenname: Li‐Ming
  surname: Wu
  fullname: Wu, Li‐Ming
  email: wlm@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 9
  givenname: Zhengyang
  surname: Zhou
  fullname: Zhou, Zhengyang
  email: zhouzhengyang@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Ling
  orcidid: 0000-0002-3693-4193
  surname: Chen
  fullname: Chen, Ling
  email: chenl@bnu.edu.cn
  organization: Beijing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38858167$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAYhy00xP7AlSOyxKUTSrHj2HG4jTKWSVMrtdvZcpw3q0diFyfd1G-w8y58Pz4JLt1AmoQ42bKf56dXv_cQ7TnvAKG3lIwpIelH7SyMU5JmRHJOX6ADylOasDxne_GeMZbkktN9dNj3N5GXkohXaJ9JySUV-QH6MYdOh2-6agEvwHhX41KHzjtr8Bk4CHqw3uE59CvvesDW4dGEl2I6O_4wmpRsMWPHP-8fPuErF_QttNZd42EJeO5joG9wuamDvwaHP2-jo325hNDpFn8J9jY-T72LDuiAZ6vBmvixuLODWb5GLxvd9vDm8TxCV19PLydlcjE7O5-cXCSG5YwmXFekaggIXdXCZAKqAqSgecObNGONkFkjWSpkBRw4qVPCBa855XXVaJM2hh2h0S53Ffz3NfSD6mxvoG21A7_uFSNC5AUjhYjo-2fojV8HF6dTjJJCZhnneaTePVLrqoNarYKNBW_UU-URyHaACb7vAzTK2OF3y0PQtlWUqO1m1Xaz6s9mozZ-pj0l_1ModsKdbWHzH1qdTM9P_7q_AKJ2te0
CitedBy_id crossref_primary_10_1039_D4MH01790K
crossref_primary_10_1002_adfm_202419204
crossref_primary_10_1039_D5SC00112A
crossref_primary_10_1021_acs_chemmater_4c03326
crossref_primary_10_1002_lpor_202500105
crossref_primary_10_1021_acs_inorgchem_5c00476
Cites_doi 10.1107/S0365110X64003553
10.1002/ange.201909760
10.1016/j.poly.2021.115191
10.1021/acs.chemmater.3c03278
10.1016/j.molstruc.2018.10.008
10.1002/ange.200704138
10.1021/acs.chemmater.5b01716
10.1002/zaac.201600023
10.1002/anie.201100914
10.1016/S0030-4018(02)01825-4
10.1021/ja0269082
10.1016/j.ccr.2018.02.017
10.1002/anie.202301404
10.1002/ange.202000290
10.1002/anie.200704138
10.1002/adma.201203369
10.1002/anie.201909760
10.1021/acs.chemrev.6b00033
10.1021/acs.accounts.9b00448
10.1007/s10854-022-07927-1
10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D
10.1016/j.ccr.2020.213692
10.1002/ange.201100914
10.1021/jacs.0c01741
10.1021/acs.chemmater.1c00362
10.1002/(SICI)1521-3757(19990201)111:3<377::AID-ANGE377>3.0.CO;2-6
10.1002/chem.202000188
10.1002/ange.202301404
10.1002/anie.202000290
10.1002/chem.201403811
10.1103/PhysRevB.36.6497
10.1002/adfm.201300180
10.1039/D2QI00200K
10.1002/ange.202301937
10.1021/ja4131615
10.1002/slct.201900598
10.1063/1.1656857
10.1039/C6TC05105G
10.1039/C7CC02625K
10.1021/ja302395f
10.1021/jacs.5b11088
10.31635/ccschem.023.202202582
10.1002/anie.202301937
10.1021/jacs.1c00959
10.1016/j.ijleo.2022.170301
10.31635/ccschem.020.202000436
10.1021/acsami.0c19507
10.1016/S0022-0248(98)00162-6
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2024 Wiley‐VCH GmbH.
2024 Wiley-VCH GmbH.
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
– notice: 2024 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202408551
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38858167
10_1002_anie_202408551
ANIE202408551
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c3731-5ab0bf0e6abd6c46eb9e8617f5f243f684f83268be5e50d20565d515dbfac2fc3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:16:39 EDT 2025
Fri Jul 25 11:44:44 EDT 2025
Wed Feb 19 02:09:51 EST 2025
Tue Jul 01 05:24:02 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Wed Jan 22 17:14:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords NLO switch
organic−inorganic hybrid
group rotation
partial hydrogen bonds breaking
4-hydroxypyridinum
Language English
License 2024 Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-5ab0bf0e6abd6c46eb9e8617f5f243f684f83268be5e50d20565d515dbfac2fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3693-4193
PMID 38858167
PQID 3109844557
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_3066793096
proquest_journals_3109844557
pubmed_primary_38858167
crossref_citationtrail_10_1002_anie_202408551
crossref_primary_10_1002_anie_202408551
wiley_primary_10_1002_anie_202408551_ANIE202408551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 16, 2024
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: September 16, 2024
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
1987; 36
2019; 4
2023; 5
2020; 142
2021; 202
2013; 23
1999 1999; 38 111
2002; 210
2020 2020; 59 132
2023 2023; 62 135
2008 2008; 47 120
2021; 143
2016; 642
2024; 36
2014; 136
2019 2019; 58 131
2014; 20
1998; 191
2021; 13
2018; 375
2017; 53
2015; 27
2012; 134
2020; 2
2021; 33
1968; 39
2015; 137
2020; 53
2021; 431
2023; 272
1964; 17
2002; 124
2022; 9
2020; 26
2016; 116
2011 2011; 50 123
2022; 33
2012; 24
2019; 1178
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_39_2
e_1_2_7_39_3
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 26
  start-page: 5887
  year: 2020
  end-page: 5892
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 2044
  year: 2021
  end-page: 2051
  publication-title: ACS Appl. Mater. Interfaces
– volume: 431
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 33
  start-page: 2929
  year: 2021
  end-page: 2936
  publication-title: Chem. Mater.
– volume: 142
  start-page: 6423
  year: 2020
  end-page: 6431
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2298
  year: 2020
  end-page: 2306
  publication-title: CCS Chem.
– volume: 33
  start-page: 7750
  year: 2022
  end-page: 7764
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 134
  start-page: 8101
  year: 2012
  end-page: 8103
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1708
  year: 2022
  end-page: 1713
  publication-title: Inorg. Chem. Front.
– volume: 116
  start-page: 13043
  year: 2016
  end-page: 13233
  publication-title: Chem. Rev.
– volume: 191
  start-page: 517
  year: 1998
  end-page: 519
  publication-title: J. Cryst. Growth
– volume: 642
  start-page: 467
  year: 2016
  end-page: 471
  publication-title: Z. Anorg. Allg. Chem.
– volume: 136
  start-page: 5367
  year: 2014
  end-page: 5375
  publication-title: J. Am. Chem. Soc.
– volume: 202
  year: 2021
  publication-title: Polyhedron
– volume: 210
  start-page: 393
  year: 2002
  end-page: 398
  publication-title: Opt. Commun.
– volume: 124
  start-page: 14410
  year: 2002
  end-page: 14415
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5277
  year: 2013
  end-page: 5284
  publication-title: Adv. Funct. Mater.
– volume: 272
  year: 2023
  publication-title: Optik
– volume: 17
  start-page: 1437
  year: 1964
  end-page: 1449
  publication-title: Acta Crystallogr.
– volume: 375
  start-page: 459
  year: 2018
  end-page: 488
  publication-title: Coord. Chem. Rev.
– volume: 50 123
  start-page: 9128 9294
  year: 2011 2011
  end-page: 9132 9298
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 62 135
  year: 2023 2023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38 111
  start-page: 366 377
  year: 1999 1999
  end-page: 369 380
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 4493
  year: 2015
  end-page: 4498
  publication-title: Chem. Mater.
– volume: 20
  start-page: 15349
  year: 2014
  end-page: 15353
  publication-title: Chem. Eur. J.
– volume: 39
  start-page: 3798
  year: 1968
  end-page: 3813
  publication-title: J. Appl. Phys.
– volume: 36
  start-page: 6497
  year: 1987
  end-page: 6500
  publication-title: Phys. Rev. B
– volume: 36
  start-page: 2113
  year: 2024
  end-page: 2123
  publication-title: Chem. Mater.
– volume: 47 120
  start-page: 577 587
  year: 2008 2008
  end-page: 580 590
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 15660
  year: 2015
  end-page: 15663
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 209
  year: 2020
  end-page: 217
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 1529
  year: 2017
  end-page: 1536
  publication-title: J. Mater. Chem. C
– volume: 59 132
  start-page: 9574 9661
  year: 2020 2020
  end-page: 9578 9665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 2497
  year: 2023
  end-page: 2505
  publication-title: CCS Chem.
– volume: 24
  start-page: 6410
  year: 2012
  end-page: 6415
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 15128 15272
  year: 2019 2019
  end-page: 15135 15279
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 3921
  year: 2019
  end-page: 3925
  publication-title: ChemistrySelect
– volume: 53
  start-page: 7669
  year: 2017
  end-page: 7672
  publication-title: Chem. Commun.
– volume: 143
  start-page: 3647
  year: 2021
  end-page: 3654
  publication-title: J. Am. Chem. Soc.
– volume: 1178
  start-page: 52
  year: 2019
  end-page: 61
  publication-title: J. Mol. Struct.
– ident: e_1_2_7_20_1
– ident: e_1_2_7_21_1
  doi: 10.1107/S0365110X64003553
– ident: e_1_2_7_36_2
  doi: 10.1002/ange.201909760
– ident: e_1_2_7_22_1
  doi: 10.1016/j.poly.2021.115191
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.chemmater.3c03278
– ident: e_1_2_7_29_1
  doi: 10.1016/j.molstruc.2018.10.008
– ident: e_1_2_7_10_3
  doi: 10.1002/ange.200704138
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.chemmater.5b01716
– ident: e_1_2_7_31_1
  doi: 10.1002/zaac.201600023
– ident: e_1_2_7_33_1
– ident: e_1_2_7_39_2
  doi: 10.1002/anie.201100914
– ident: e_1_2_7_47_1
  doi: 10.1016/S0030-4018(02)01825-4
– ident: e_1_2_7_40_1
  doi: 10.1021/ja0269082
– ident: e_1_2_7_3_2
  doi: 10.1016/j.ccr.2018.02.017
– ident: e_1_2_7_8_1
– ident: e_1_2_7_5_1
– ident: e_1_2_7_17_1
  doi: 10.1002/anie.202301404
– ident: e_1_2_7_26_2
  doi: 10.1002/ange.202000290
– ident: e_1_2_7_10_2
  doi: 10.1002/anie.200704138
– ident: e_1_2_7_34_2
  doi: 10.1002/adma.201203369
– ident: e_1_2_7_36_1
  doi: 10.1002/anie.201909760
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.6b00033
– ident: e_1_2_7_43_1
  doi: 10.1021/acs.accounts.9b00448
– ident: e_1_2_7_30_1
  doi: 10.1007/s10854-022-07927-1
– ident: e_1_2_7_12_1
  doi: 10.1002/(SICI)1521-3773(19990201)38:3<366::AID-ANIE366>3.0.CO;2-D
– ident: e_1_2_7_4_2
  doi: 10.1016/j.ccr.2020.213692
– ident: e_1_2_7_39_3
  doi: 10.1002/ange.201100914
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.0c01741
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.chemmater.1c00362
– ident: e_1_2_7_12_2
  doi: 10.1002/(SICI)1521-3757(19990201)111:3<377::AID-ANGE377>3.0.CO;2-6
– ident: e_1_2_7_24_1
  doi: 10.1002/chem.202000188
– ident: e_1_2_7_17_2
  doi: 10.1002/ange.202301404
– ident: e_1_2_7_37_1
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202000290
– ident: e_1_2_7_41_1
  doi: 10.1002/chem.201403811
– ident: e_1_2_7_42_1
  doi: 10.1103/PhysRevB.36.6497
– ident: e_1_2_7_38_2
  doi: 10.1002/adfm.201300180
– ident: e_1_2_7_15_1
  doi: 10.1039/D2QI00200K
– ident: e_1_2_7_23_2
  doi: 10.1002/ange.202301937
– ident: e_1_2_7_35_2
  doi: 10.1021/ja4131615
– ident: e_1_2_7_19_1
  doi: 10.1002/slct.201900598
– ident: e_1_2_7_32_1
  doi: 10.1063/1.1656857
– ident: e_1_2_7_1_1
– ident: e_1_2_7_16_1
  doi: 10.1039/C6TC05105G
– ident: e_1_2_7_18_1
  doi: 10.1039/C7CC02625K
– ident: e_1_2_7_6_2
  doi: 10.1021/ja302395f
– ident: e_1_2_7_14_1
  doi: 10.1021/jacs.5b11088
– ident: e_1_2_7_46_1
  doi: 10.31635/ccschem.023.202202582
– ident: e_1_2_7_23_1
  doi: 10.1002/anie.202301937
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.1c00959
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ijleo.2022.170301
– ident: e_1_2_7_7_2
  doi: 10.31635/ccschem.020.202000436
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.0c19507
– ident: e_1_2_7_44_1
  doi: 10.1016/S0022-0248(98)00162-6
SSID ssj0028806
Score 2.542292
Snippet Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering...
Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202408551
SubjectTerms 4-hydroxypyridinium
Birefringence
Density functional theory
group rotation
Hydrogen bonding
Hydrogen bonds
Laser damage
NLO switch
Nonlinear optics
Optical switching
Optoelectronics
organic–inorganic hybrid
partial hydrogen bonds breaking
Room temperature
Second harmonic generation
Yield point
Title Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202408551
https://www.ncbi.nlm.nih.gov/pubmed/38858167
https://www.proquest.com/docview/3109844557
https://www.proquest.com/docview/3066793096
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQN7ABynNKQUZCohVKm_ErSXfV0CogMSPNMFJ3kV-RqrZJlc4I0S9gzYb_40t6bzwJDAghwS5R7MSOj-1j-95zCXklpHOZF1kkkthFAtZukRlmSSQ0nhmpUplWp-DDWOVz8f5EnvzkxR_0IfoNN-wZ7XiNHVybq_0foqHogQ3ru1aiq_WhRoMtZEXTXj-KATiDexHnEUah71QbY7a_nn19VvqNaq4z13bqOb5HdFfoYHFytrdcmD17_Yue4__U6j65u-Kl9DAAaZPc8tUDcnvUhYN7SL5N_YVuztDTis5wFe1orpsLVNalQbsam5hOg82tp6cV3RnJXI0nu292RjmfTfju9y9fD-i8wohH6AVPgXzSaQ0vrEuaf3ZNDWimGOgYcwOAYdI4p28bHJDpONRON3Ry2e6_09mnU4DcIzI_Pvo4yqNVVIfI8oQPI6lNbMrYK22cskJ5k_kUeFQpSyZ4qVJRwiijUuOll7FjwNCkA9blTKktKy1_TDaquvJPCdXMCpZIoY21IuUIOu8si4WHocoKPyBR16qFXUmeY-SN8yKINbMCf3fR_-4Bed2nvwxiH39Mud2BpFh1-qsCRVZTIaRMBuRl_xiaCc9gdOXrJaRBo-KMw8JxQJ4EcPWf4mkq06GC3KyFyF_KUByO3x31d1v_kukZuYPXaP8yVNtkY9Es_XMgWQvzou1IN6AWHac
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLlPfSAkZCohVKm_UrCbdq2yqFNivtdiVukZ9S1Tapwq4Q_ALOXPh__BI88SZoQQgJjknsxI6_GY_tmW8Qesm4MZllWcSS2ETMr90iNcySiEk4MxJOqJan4LQQ-Yy9fc87b0KIhQn8EP2GG0hGq69BwGFDeu8nayiEYPsFXsvRBUHUNyGtN9DnH0x6Bini4RkCjCiNIA99x9sYk73V-qvz0m_G5qrt2k4-R3eQ6podfE4udhdztas__8Lo-F_92kC3l6Yp3g9Yuotu2OoeWh91GeHuo28TeyWbCwi2wlNYSBucy-YKyHVxoK-GUcaT4HZr8XmFt0c8F8V45_X2KKfTMd35_uXrGzyrIOkRBMJjb3_iSe1fWDucfzJN7QGNIdcx1PYY9vPGJT5oQCfjInRPNnh83W7B4-nHc4-6B2h2dHg2yqNlYodI04QOIy5VrFxshVRGaCasymzqTSnHHWHUiZQ5r2hEqiy3PDbEG2nceMPLKCc1cZo-RGtVXdnHCEuiGUk4k0prllLAnTWaxMx6baWZHaCoG9ZSL1nPIfnGZRn4mkkJv7vsf_cAverLXwe-jz-W3OpQUi7l_kMJPKspY5wnA_Sif-yHCY5hZGXrhS8DfsUZ9WvHAXoU0NV_iqYpT4fC1yYtRv7ShnK_OD7sr578S6XnaD0_Oz0pT46Ld5voFtwHd5ih2EJr82Zhn3qba66etVL1A3OkIcM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQkIAX7pfCACMhsQllS31LwtvUrsq4pKil0t4iX6VpW1KFVgh-Ac-88P_4JfjEbaAghASPSezEjr9zfGyf8x2EnjJuTGZZFrEkNhHza7dI9bMkYhLOjIQTquUpeFOIfMZeHvPjn6L4Az9Et-EGktHqaxDwuXH7P0hDIQLbr-9aii6Iob7IRJxB8obhpCOQIh6dIb6I0gjS0K9pG2Oyv1l_c1r6zdbcNF3buWd0Dcl1q4PLyenecqH29KdfCB3_p1vX0dWVYYoPApJuoAu2uokuD9b54G6hrxN7LptTCLXCU1hGG5zL5hyodXEgr4YxxpPgdGvxSYV3BjwXxXj3-c4gp9Mx3f32-csLPKsg5RGEwWNvfeJJ7V9YO5x_NE3t4Ywh0zHU9gj2s8YZHjagkXEReicbPJ63G_B4-uHEY-42mo0O3w3yaJXWIdI0of2ISxUrF1shlRGaCasym3pDynFHGHUiZc6rGZEqyy2PDfEmGjfe7DLKSU2cpnfQVlVX9h7CkmhGEs6k0pqlFFBnjSYxs15XaWZ7KFqPaqlXnOeQeuOsDGzNpITfXXa_u4eedeXnge3jjyW31yApV1L_vgSW1ZQxzpMeetI99sMEhzCysvXSlwGv4oz6lWMP3Q3g6j5F05SnfeFrkxYif2lDeVAcHXZX9_-l0mN06e1wVL4-Kl49QFfgNvjC9MU22lo0S_vQG1wL9aiVqe_r0CBy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remarkable+Second+Harmonic+Generation+Response+in+%28C+5+H+6+NO%29+%2B+%28CH+3+SO+3+%29+%E2%88%92+%3A+Unraveling+the+Role+of+Hydrogen+Bond+in+Thermal+Driven+Nonlinear+Optical+Switch&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Zi%E2%80%90Peng&rft.au=Liu%2C+Xin&rft.au=Wang%2C+Rui%E2%80%90Xi&rft.au=Zhao%2C+Shuang&rft.date=2024-09-16&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=38&rft_id=info:doi/10.1002%2Fanie.202408551&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202408551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon