Remarkable Second Harmonic Generation Response in (C5H6NO)+(CH3SO3)−: Unraveling the Role of Hydrogen Bond in Thermal Driven Nonlinear Optical Switch

Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4H...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 63; no. 38; pp. e202408551 - n/a
Main Authors Zhang, Zi‐Peng, Liu, Xin, Wang, Rui‐Xi, Zhao, Shuang, He, Wen‐Jie, Chen, Hong‐Yu, Deng, Xue‐Bin, Wu, Li‐Ming, Zhou, Zhengyang, Chen, Ling
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.09.2024
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Heat‐activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)− (4‐hydroxypyridinium methylsulfonate, 4HPMS), is a near‐room‐temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat‐stimulated NLO switches. It offers excellent contrast of 13 and a high laser‐induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)− due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)−. Additionally, 4HPMS‐RTP also exhibits mechanochromism upon grinding as well as an aggregation‐enhanced emission in a mixture of acetone and water. We report a novel material (C5H6NO)+(CH3SO3)− (4HPMS), exhibiting the strongest second harmonic generation (SHG) intensity among all heat‐stimulated nonlinear optical (NLO) switches. We unravel an unprecedently easier breaking of the shorter hydrogen bond and a rare large thermal hysteresis of 50 °C during the reversible structural phase transition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202408551